Page 50 - 201901
P. 50
·36· 精细化工 FINE CHEMICALS 第 36 卷
阻止乳液的聚并,而且分散于连续相中,通过氢键 胶为原料,在酸性条件下(pH = 4.0)通过二次去溶
或范德华力等与两相界面上的颗粒相互作用,由此 剂法制得的。与文献报道的明胶纳米颗粒(GNPs)
将不同液滴连接在一起,形成三维网状结构,使液 相比,本文制备的 AGNPs 主要有 4 个方面的特点:
滴受限于凝胶状乳液中,进而增加乳液的稳定性 [13] 。 粒径较小(150~300 nm),具有良好的单分散性(PDI =
此外通过稳定性实验发现,AGNPs 质量浓度为 3、5、 0.068);表面净电荷量较高(ζ≈35 mV),具备长期
15、25、50 g/L 制备的 Pickering 高内相乳液在 4 ℃ 的储存稳定性;呈光滑球形,具有质地均匀的刚性
下储存 9 个月均未出现明显分层现象,表现出良好 结构;三相接触角(θ ow = 67° ± 5°)增大,具备较
的稳定性。由此表明, AGNPs 是一种优异的 高的表面疏水性。因此,AGNPs 在制备高稳定性
Pickering 乳液稳定剂,可用于高稳定性乳液的制备。 Pickering 乳液方面具有潜在应用优势。
参考文献:
[1] Kalashnikova I, Bizot H, Bertoncini P, et al. Cellulosic nanorods of
various aspect ratios for oil in water Pickering emulsions[J]. Soft
Matter, 2013, 9(3): 952-959.
[2] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by
colloidal particles[J]. Advances in Colloid and Interface Science,
2003, 100(2): 503-546.
图 9 以 AGNPs 为稳定剂制备的体积分数为 80%的 [3] Barbetta A, Cameron N R. Morphology and surface area of
Pickering 乳液(a)和乳液的荧光图像(b)(激发 emulsion-derived (PolyHIPE) solid foams prepared with oil-phase
soluble porogenic solvents: Three-component surfactant system[J].
波长 543 nm)
Macromolecules, 2004, 37(9): 3202-3213.
Fig. 9 Appearance (a) of the AGNPs-stabilized Pickering [4] Zhou S Z, Bismarck A, Steinke J H G, et al. Interconnected
emulsion having an 80% internal phase and fluorescence macroporous glycidyl methacrylate-grafted dextran hydrogels
image (b) of AGNPs-stabilized Pickering emulsion synthesised from hydroxyapatite nanoparticle stabilised high internal
(The excitation wavelength is 543 nm) phase emulsion templates[J]. Journal of Materials Chemistry, 2012,
22(36): 18824-18829.
2.9 AGNPs 的反应机理分析 [5] Gao Q X, Wang C Y, Tong Z. Facile and high efficient fabrication of
AGNPs 的反应机理如图 10 所示。结合二次去 hybrid microcapsules for urease encapsulation and their use as
biomimetic reactors[J]. Chemical Research in Chinese Universities,
溶剂法的制备机理可知,当氨基化明胶处于水溶液 2010, 26(5): 842-846.
状态时,为了保证其分子链始终处于伸展状态,需 [6] Wang W, Laird E D, Gogotsi Y, et al. Bending single-walled carbon
nanotubes into nanorings using a Pickering emulsion-based
调节溶液的 pH 远离其等电点(pH = 4.0,氨基化明
process[J]. Carbon, 2012, 50(5): 1769-1775.
胶等电点约为 11.5)来增大氨基化明胶分子间的排 [7] Shinto H, Hirata T, Fukasawa T, et al. Effect of interfacial serum
斥力,使分子链充分伸展。当向其水溶液中滴加去 proteins on melanoma cell adhesion to biodegradable poly(L-lactic
acid) microspheres coated with hydroxyapatite[J].Colloids Surf B
溶剂化试剂丙酮时,它能够部分或全部取代水分子 Biointerfaces, 2013, 108(4), 8-15.
[32]
的位置,引起氨基化明胶分子链脱水并发生链皱缩 。 [8] Destribats M, Eyharts M, Lapeyre V, et al. Impact of pNIPAM
microgel size on its ability to stabilize Pickering emulsions[J].
此时,加入交联剂戊二醛使纳米颗粒中蛋白质链发
Langmuir, 2014, 30(7): 1768-1777.
生化学交联,固定纳米颗粒的形态。AGNPs 的红外 [9] Lu X, Xiao J, Huang Q. Pickering emulsions stabilized by
图谱分析、形貌表征结果及自发荧光特性与反应机 media-milled starch particles[J]. Food Research International, 2017,
105: 140-149.
理相吻合。 [10] Werner A, Schmitt V, Sèbe G, et al. Synthesis of surfactant-free
micro-and nanolatexes from Pickering emulsions stabilized by
acetylated cellulose nanocrystals[J]. Polymer Chemistry, 2017, 8(39):
6064-6072.
[11] Mwangi W W, Ho K W, Tey B T, et al. Effects of environmental
factors on the physical stability of Pickering-emulsions stabilized by
chitosan particles[J]. Food Hydrocolloids, 2016, 60: 543-550.
[12] Zhu X F, Zhang N, Lin W F, et al. Freeze-thaw stability of Pickering
emulsions stabilized by soy and whey protein particles[J]. Food
Hydrocolloids, 2017, 69: 173-184.
[13] Tan H, Sun G, Lin W, et al. Gelatin particle-stabilized high internal
图 10 AGNPs 的反应机理 phase emulsions as nutraceutical containers[J]. ACS Applied
Fig. 10 Reaction mechanism of AGNPs Materials & Interfaces, 2014, 6(16): 13977-13984.
[14] Pawlik A, Kurukji D, Norton I, et al. Food-grade Pickering
emulsions stabilised with solid lipid particles[J]. Food & Function,
3 结论 2016, 7(6): 2712-2721.
氨基化明胶纳米颗粒(AGNPs)是以氨基化明 (下转第 43 页)