Page 103 - 《精细化工》2019年第11期
P. 103

第 11 期                       陈加利,等:  负载型 Ru 催化剂的制备及加氢性能                                 ·2251·


                 hydrogenation to dimethyl cyclohexanedicarboxylate over bimetallic   2011, 53(2): 139-150.
                 catalysts  on  carbon  nanotubues[J].  Industrial  &  Engineering   [29]  Zhou  L,  Shao  M  F,  Wei  M,  et al.  Advances  in  efficient
                 Chemistry Research, 2014, 53: 4604-4613.          electrocatalysts  based  on  layered  double  hydroxides  and  their
            [8]   Zhang F Z, Chen J L, Chen P, et al. Pd nanoparticles supported on   derivatives[J]. Journal of Energy Chemistry,2017, 26(6): 1094-1106.
                 hydrotalcite-modified  porous  alumina  spheres  as  selective   [30]  Yang  Z  X,  Hang  J  J,  Fang  Q,  et al.  Catalytic  hydrogenation  of  a
                 hydrogenation catalyst[J]. AIChE Journal,  2012, 58(6): 1853-1861.     pyrolysis  gasoline  model  feed  over  supported  NiRu-bimetallic
            [9]   Chen  J  L,  Guo  L,  Zhang  F  Z.  The  Role  of  Hydrotalcite-modified   catalyst  with  Ru-content  from  0.  01wt%  to  0.  1wt%[J].  Applied
                 Porous Alumina Spheres in Bimetallic RuPd Catalysts for Selective   Catalysis A: General, 2018, 568: 183-190.
                 Hydrogenation[J]. Catalysis Communications, 2014, 55: 19-23.     [31]  Liu C L, Nan C S, Fan G L, et al. Facile synthesis and synergistically
            [10]  Chen J L, Liu X, Zhang F Z. Composition Regulation of Bimetallic   acting  catalytic  performance  of  supported  bimetallic  PdNi
                 RuPd Catalysts Supported on Porous Alumina Spheres for Selective   nanoparticle  catalysts  for  selective  hydrogenation  of  citral[J].
                 Hydrogenation[J]. Chemical Engineering Journal, 2015, 259: 43-52.     Molecular Catalysis, 2017, 436: 237-247.
            [11]  Schlossman  M  L.  Universal  nail  polish  using  polyester  resin:   [32]  An  Z,  Wang  W  L,  Dong  S  H,  et al.  Well-distributed  cobalt-based
                 US4301046[P]. 1981-11-17.                         catalysts  derived  from  layered  double  hydroxides  for  efficient
            [12]  Appleton P, Wood M A. Process: US5414159[P]. 1993-12-30.     selective   hydrogenation   of   5-hydroxymethyfurfural   to   2,
            [13]  Huang Z F, Pan L, Li K, et al. Review on selective hydrogenation of   5-methylfuran[J]. Catalysis Today, 2019, 319: 128-138.
                 nitroarene  by  catalytic,  photocatalytic  and  electrocatalytic   [33]  Feng J T, Lin Y J, Evans D G, et al. Enhanced metal dispersion and
                 reactions[J].  Applied  Catalysis  B:  Environmental,  2018,  227:   hydrodechlorination  properties  of  a  Ni/Al 2O 3  catalyst  derived  from
                 386-408.                                          layered  double  hydroxides[J].  Journal  of  Catalysis,  2009,  266(2):
            [14]  Yuan W T, Zhang D W, Oiu Y, et al. Direct in situ TEM visualization   351-358.
                 and  insight  of  the  facet-dependent  sintering  behaviors  of  gold  on   [34]  Wen X, Li R S, Yang Y X, et al. An egg-shell type Ni/Al 2O 3 catalyst
                 TiO 2[J].  Angewandte  Chemie  International  Edition,  2018,  57:   derived  from  layered  double  hydroxides  precursors  for  selective
                 16827-16831.                                      hydrogenation of pyrolysis gasoline[J]. Applied Catalysis A: General,
            [15]  Gu K, Pan X T, Wang W W, et al. In situ growth of Pd nanosheets on   2013, 46: 204-215.
                 g-C 3N 4  nanosheets  with  well-contacted  interface  and  enhanced   [35]  Gao  Z,  Fan  G  L,  Yang  L,  et al.  Double-active  sites  cooperatively
                 catalytic  performance  for  4-nitrophenol  reduction[J].  Small,  2018,   catalyzed  transfer  hydrogenation  of  ethyl  levulinate  over  a
                 14: 1801-1812.                                    ruthenium-based  catalyst[J].  Molecular  Catalysis,  2017,  442:
            [16]  Pei Y C, Qi Z Y, Tian W, et al. Intermetallic-structures with atomic   181-190.
                 precision  for  selective  hydrogenation  of  nitroarenes[J].  Journal  of   [36]  Li  Q  Y, Man P,  Yuan L Q,  et al.  Ruthenium  supported  on  CoFe
                 Catalysis, 2017, 356: 307-314.                    layered   double   oxide   for   selective   hydrogenation   of
            [17]  Sun J Y, Zhang J R, Fu H Y, et al. Enhance catalytic hydrogenation   5-hydroxymethylfurfural[J]. Molecular Catalysis, 2017, 431: 32-38.
                 reduction  of  bromate  on  Pd  catalyst  supported  on  CeO 2-modified   [37]  Kyungki-do. Process for the preparation of cyclohexanedimethanol:
                 SBA-15  prepared  by  strong  electronstatic  adsorption[J].  Applied   US6187968A[P]. 2001-12-13.
                 Catalysis B: Environmental, 2018, 229: 32-40.     [38]  Tennant B A, Williams M D, Gustafson B L. Low pressure process
            [18]  Tian P F, Ding D D, Sun Y, et al. Theoretical study of size effects on   for   the   manufacture   of   cyclohexanedicarboxylate   esters:
                 the direct synthesis of hydrogen peroxide over palladium catalysts[J].   CN1099744A[P], 1995-08-03.
                 Journal of Catalysis, 2019, 36: 95-104.       [39]  Paulhiac J L, Clause O. Surface coprecipitation of Co(II), Ni(II), or
            [19]  Liu Y N, Zhao J Y, Feng J T, et al. Layered-double hydroxide-derived   Zn(II) with Al(III) ions during impregnation of γ-alumina at neutral
                 Ni-Cu  nanoalloy  catalysts  for  semihydrogenation  of  alkynes:   pH[J].  Journal  of  the  American  Chemical  Society,  1993,  115:
                 Improvement of selectivity and anti-coking ability via alloying of Ni   11602-11603.
                 and Cu[J]. Journal of Catalysis, 2018, 359: 251-260.     [40]  Jean-Baptiste  d’Espinose  De  La  C,  Maggy  K,  Oliver  C.
            [20]  Wang Z L, Xu S M, Xu Y Q, et al. Single Ru atoms with precise   Impreganation of γ-alumina with Ni(II) or Co(II) ions at neutral pH:
                 coordination on a monolayer layered double hydroxide for efficient   Hydrotalcite-  type  coprecipitate  formation  and  characterization[J].
                 electrooxidation catalysis[J]. Chemical Science, 2019, 10: 378-384.     Journal of the American Chemical Society, 1995, 117: 11471-11481.
            [21]  Liu Y, Liu Y L, Zhang Y. The synergistic effects of Ru and WO x for   [41]  Wanger  C  D,  Riggs  W  M,  Davis  L  E,  et al.  Handbook  of  X-ray
                 aqueous-phase  hydrogenation  of  glucose  to  lower  diols[J].  Applied   photoelectron  spectroscopy[M].  USA:  Perkin-elmer  corporation,
                 Catalysis B: Environmental, 2019, 242: 100-108.     1979: 106-107.
            [22]  Yang  Z,  Chen  W  H,  Zheng  J  B,  et al.  Efficient  low-temperature   [42]  Betancourt  P,  Rives  A,  Hubaut  R,  et al A study  of the
                 hydrogenation of acetone on bimetallic Pt-Ru/C catalyst[J]. Journal   ruthenium-alumina  system[J].  Applied  Catalysis  A:  General,  1998,
                 of Catalysis, 2018, 363: 52-62.                   170(2): 307-314.
            [23]  Dong J H, Fu Q, Jiang Z, et al. Carbide-supported Au catalysts for   [43]  Ji  L,  Lin  J  Y,  Zeng  H  C.  Thermal  processes  of  volatile  RuO 2 in
                 water-gas shift reactions: A new territory for the strong meta-support   nanocrystalline  Al 2O 3  matrixes  involving  phase  transformation[J].
                 interaction[J]. Journal of the American Chemical Society, 2018, 140:   Chemistry Materials, 2001, 13: 2403-2412.
                 13808-13816.                                  [44]  Kim Y H, Park E D. The effect of the crystalline phase of alumina on
            [24]  Zhao Y J, Fan G L, Li F. Recent advances in catalytic properties of   the  selective  CO  oxidation  in  a  hydrogen-rich  stream  over
                 LDHs/carbon  composite  materials[J].  Journal  of  the  Chemical   Ru/Al 2O 3[J].  Applied  Catalysis  B:  Environmental,  2010,  96(1/2):
                 Society Research, 2014, 43: 7040-7066.            41-50.
            [25]  Lang  Y  Q,  Wang  Q  Q,  Xing  J  M,  et al.  Preparation  of  magnetic   [45]  Zhao  Yao  (赵耀),  Duan  Dayong  (段大勇), Wei Junfu (魏俊富).
                 γ-Al 2O 3  supported  palladium  catalysts  for  hydrogenation  of   Research  of  performance  of  hydrogenation  catalyst  about  DMT[J].
                 nitrobenzene[J]. AIChE Journal, 2008, 54(9): 2303–2309.     Journal  of  Tianjin  Polytechnic  University  (天津工业大学学报),
            [26]  Eleonora C, Valentina G, Luca P, et al. Facile preparation methods of   2012, 31(1): 57-60.
                 hydrotalcite layered materials and their structural characterization by   [46]  Huang  Y  Q,  Ma  Y,  Cheng  Y  W,  et al.  Dimethyl  terephthalate
                 combined techniques[J]. Inorganica Chimica Acta, 2018, 470: 36–50.     hydrogenation   to   dimethyl   cyclohexanedicarboxylates   over
            [27]  Katsuomi  T.  Recent  development  of  layered  double  hydroxide-   bimetallic catalysts on carbon nanotubes[J]. Industrial & Engineering
                 derived catalysts-rehydration, reconstitution, and supporting, aiming   Chemistry Research, 2014, 53: 4604-4613.
                 at  commercial  application[J].  Applied  Clay  Science,  2017,  136:   [47]  Wang Xiaohui (王晓会), Xin Junna (辛俊娜), Ma Yonghuan (马永
                 112-141.                                          欢),  et al.  Synthesis  of  dimethyl-1,4-cyclohexanedicarboxylate  by
            [28]  Xu  Z  P,  Zhang  J,  Adebajo  M  O,  et al.  Catalytic  applications  of   low   pressure   hydrogenation   of   dimethyl   terephthalate[J].
                 layered double hydroxides and derivatives[J]. Applied Clay Science,   Petrochemical Technology (石油化工), 2007, 36(5): 433-436.
   98   99   100   101   102   103   104   105   106   107   108