Page 76 - 201902
P. 76
·242· 精细化工 FINE CHEMICALS 第 36 卷
应(3)〕。同时,活泼的羟基自由基(·OH)和超氧 活性的 CuS/GO 纳米复合材料,而且样品中 CuS 纳
–
阴离子(·O 2 )与 CuS/GO 纳米复合材料吸附的有机 米粒子以粒径为 10~20 nm 均匀地负载在氧化石墨
物(TC 或者 Rh-B)相互作用,使得 TC 或者 Rh-B 烯表面,形成稳定的具有双功能性质的催化剂。并
有机分子被降解成甲酸甲酯等小分子或者水、二氧 且通过对有机污染物催化降解研究,所合成的
化碳 [19] 〔反应(4、5)〕。 CuS/GO 纳米复合材料呈现出很好的光催化活性。
在可见光照射下降解抗生素 TC 和工业染料 Rh-B 效
率分别达到 68%和 95%,具有一定的光催化活性。
参考文献:
[1] Wang M Y, Ioccozia J, Sun L, et al. Inorganic-modified
semiconductor TiO 2 nanotube arrays for photocatalysis[J]. Energy &
Environmental Science, 2014, 7: 2182-2202.
[2] Li J, Ma Y, Ye Z, et al. Fast electron transfer and enhanced visible
light photocatalytic activity using multi-dimensional components of
carbon quantum dots@3D daisy-like In 2S 3/single-wall carbon nanotubes
[J]. Applied Catalysis B: Environmental, 2017, 204(5): 224-238.
[3] Chen Y, Lu Q J, Yan X L. Enhanced photocatalytic activity of the
carbon quantum dot-modified BiOI microsphere[J]. Nanoscale
Research Letters, 2016, 11: 60.
[4] Nguyen C C, Vu N N, Do T O. Efficient hollow double-shell
photocatalysts for the degradation of organic pollutants under visible light
and in darkness[J]. Journal of Materials Chemistry A, 2016, 4: 4413-4419.
[5] Yu Y, Yu J C, Chan C Y, et al. Enhancement of adsorption and
photocatalytic activity of TiO 2 by using Carbon nanotubes for the
treatment of azo dye[J]. Applied Catalysis B: Environmental, 2005,
61(1): 1-11.
[6] Ke Chuan (柯川), Cai Fanggong (蔡芳共) , Yang Feng (杨峰), et al.
Preparation and photoelectrical properties of CuS/TiO 2 nanotube
heterojunction arrays[J]. Chemical Journal of Chinese Universities
(高等学校化学学报), 2013, 34(2): 423-428.
[7] Zhang Y, Tian J, Li H, et al. Biomolecule-assisted, environmentally
图 6 CuS/GO 纳米复合材料形成的过程及机理图 friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites
Fig. 6 Formation process and mechanism of CuS/GO with enhanced photocatalytic performance[J]. Langmuir, 2012, 28
(35): 12893-12900.
nanocomposite [8] Yang Y, Tian C G, Wang J C, et al. Facile synthesis of novel 3D
nanoflower-like Cu xO/multilayer graphene composites for room temperature
NO x gas sensor application[J]. Nanoscale, 2014, 6(13): 7369-7378.
[9] Andrewsa R, Jacquesa D, Dickeyb E C, et al. Purification and
structural annealing of multiwalled carbon nanotubes at graphitization
temperatures[J]. Carbon, 2001, 39(11): 1681-1687.
[10] Yang Ying (杨颖), Dong Xiangting (董相廷), Wang Jinxian (王进
贤), et al. Construction of Cu 2O/rGO nanocomposites and their
application in detection of NOx gas molecule[J]. Journal of Synthetic
Crystals (人工晶体学报),2015, 44(6): 1603-1607.
[11] Zhao C J, Wu X, Zhang X J, et al. Facile synthesis of layered
CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive
nonenzymatic detection of glucose[J]. Journal of Electroanalytical
Chemistry, 2017, 785(15): 172-179.
[12] Zhao J W, Li Y Z, Ji F, et al. Syntheses, structures and
electrochemical properties of a class of 1D double chain
polyoxotungstate hybrids [H 2d-ap][Cu(Dap) 2] 0.5[Cu(Dap) 2(H 2O)]
[Ln(H 2O) 3(Α-GeW 11O 39)]·3H 2O[J]. Dalton Transactions, 2014,
43(15): 5694-5706.
图 7 CuS/GO 纳米复合材料光催化降解不同有机物的机 [13] Lee H, Kwak Su B, Park N K, et al. Assembly of a check-patterned
CuS x-TiO 2 film with an electron-rich pool and its application for the
理图 photoreduction of carbon dioxide to methane[J]. Applied Surface
Fig. 7 Schematic of the mechanisms for the different Science, 2017, 393(30): 385-396.
reactions over CuS/GO nanocomposite [14] Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of
luminescent carbon nanodots: From preparation to luminescence
mechanism[J]. Advanced Materials, 2011, 23(48): 5801-5806.
–
+
C u S + hv → e (CB)+h (VB) (反应 1) [15] Dubale A A, Tamirat A G, Chen H M, et al. A highly stable CuS and
CuS-Pt modified Cu 2O/CuO heterostructure as an efficient
–
–
e +O 2 →·O 2 (反应 2) photocathode for the hydrogen evolution reaction[J]. Journal of
Materials Chemistry A, 2016, 4: 2205-2216.
–
+
h +OH →·OH (反应 3) [16] Liu P B, Huang Y, Yan J, et al. CuS nanoplatelets arrays grown on
graphene nanosheets as advanced electrode materials for supercapacitor
–
TC+ ·OH+ ·O 2 → 中间产物 →小分子(反应 4) applications[J]. ACS Applied Materials Interfaces, 2016, 8(8): 5536-5546.
[17] Zheng J H, Hu Y D, Zhang L. Design and construction of
–
Rh-B + ·OH+ ·O 2 → 中间产物 →H 2 O +CO 2 bifunctional magnetically recyclable 3D CoMn 2O 4/CFs hybrid as
adsorptive photocatalyst for the effective removal of contaminants[J].
(反应 5) Physical Chemistry Chemical Physics, 2017, 19(36): 25044-25051.
[18] Yu Xiuna (于秀娜). Preparation of micro/nano-composite photocatalyst
and study on the degradation mechanism based on antibiotic wastewater
3 结论 degradation[D]. Zhenjiang: Jiangsu University (江苏大学): 2015.
[19] Roland M. Semiconductor composites:Strategies for enhancing
charge carrier separation to improve photocatalytic activity[J].
本文通过一锅水热法制备出一种具有很好催化 Advance Functional Materials, 2014, 24(17): 2421-2440.