Page 76 - 201902
P. 76

·242·                             精细化工   FINE CHEMICALS                                  第 36 卷

            应(3)〕。同时,活泼的羟基自由基(·OH)和超氧                          活性的 CuS/GO 纳米复合材料,而且样品中 CuS 纳
                       –
            阴离子(·O 2 )与 CuS/GO 纳米复合材料吸附的有机                     米粒子以粒径为 10~20  nm 均匀地负载在氧化石墨
            物(TC 或者 Rh-B)相互作用,使得 TC 或者 Rh-B                    烯表面,形成稳定的具有双功能性质的催化剂。并
            有机分子被降解成甲酸甲酯等小分子或者水、二氧                             且通过对有机污染物催化降解研究,所合成的
            化碳  [19] 〔反应(4、5)〕。                                CuS/GO 纳米复合材料呈现出很好的光催化活性。

                                                               在可见光照射下降解抗生素 TC 和工业染料 Rh-B 效
                                                               率分别达到 68%和 95%,具有一定的光催化活性。
                                                               参考文献:
                                                               [1]   Wang  M  Y,  Ioccozia  J,  Sun  L,  et al.  Inorganic-modified
                                                                   semiconductor TiO 2 nanotube arrays for photocatalysis[J]. Energy &
                                                                   Environmental Science, 2014, 7: 2182-2202.
                                                               [2]   Li J, Ma Y, Ye Z, et al. Fast electron transfer and enhanced visible
                                                                   light photocatalytic activity using multi-dimensional components of
                                                                   carbon quantum dots@3D daisy-like In 2S 3/single-wall carbon nanotubes
                                                                   [J]. Applied Catalysis B: Environmental, 2017, 204(5): 224-238.
                                                               [3]   Chen Y, Lu Q J, Yan X L. Enhanced photocatalytic activity of the
                                                                   carbon  quantum  dot-modified  BiOI  microsphere[J].  Nanoscale
                                                                   Research Letters, 2016, 11: 60.
                                                               [4]   Nguyen C C,  Vu N N,  Do T O.  Efficient  hollow  double-shell
                                                                   photocatalysts for the degradation of organic pollutants under visible light
                                                                   and in darkness[J]. Journal of Materials Chemistry A, 2016, 4: 4413-4419.
                                                               [5]   Yu  Y,  Yu J C,  Chan C  Y,  et al.  Enhancement  of  adsorption  and
                                                                   photocatalytic  activity  of  TiO 2  by  using  Carbon  nanotubes  for  the
                                                                   treatment of azo dye[J]. Applied Catalysis B: Environmental, 2005,
                                                                   61(1): 1-11.
                                                               [6]   Ke Chuan (柯川), Cai Fanggong (蔡芳共) , Yang Feng (杨峰), et al.
                                                                   Preparation  and  photoelectrical  properties  of  CuS/TiO 2  nanotube
                                                                   heterojunction  arrays[J].  Chemical  Journal  of  Chinese  Universities
                                                                   (高等学校化学学报), 2013, 34(2): 423-428.
                                                               [7]   Zhang Y, Tian J, Li H, et al. Biomolecule-assisted, environmentally
               图 6  CuS/GO 纳米复合材料形成的过程及机理图                         friendly, one-pot synthesis of CuS/reduced graphene oxide nanocomposites
            Fig.  6    Formation  process  and  mechanism  of  CuS/GO   with  enhanced  photocatalytic  performance[J].  Langmuir,  2012,  28
                                                                   (35): 12893-12900.
                    nanocomposite                              [8]   Yang  Y,  Tian  C  G,  Wang  J  C,  et al.  Facile  synthesis  of  novel  3D
                                                                   nanoflower-like Cu xO/multilayer graphene composites for room temperature
                                                                   NO x gas sensor application[J]. Nanoscale, 2014, 6(13): 7369-7378.
                                                               [9]   Andrewsa  R,  Jacquesa  D,  Dickeyb  E  C,  et al.  Purification  and
                                                                   structural annealing of multiwalled carbon nanotubes at graphitization
                                                                   temperatures[J]. Carbon, 2001, 39(11): 1681-1687.
                                                               [10]  Yang  Ying  (杨颖),  Dong  Xiangting  (董相廷),  Wang  Jinxian  (王进
                                                                   贤),  et al.  Construction  of  Cu 2O/rGO  nanocomposites  and  their
                                                                   application in detection of NOx gas molecule[J]. Journal of Synthetic
                                                                   Crystals (人工晶体学报),2015, 44(6): 1603-1607.
                                                               [11]  Zhao  C  J,  Wu  X,  Zhang  X  J,  et al.  Facile  synthesis  of  layered
                                                                   CuS/RGO/CuS  nanocomposite  on  Cu  foam  for  ultrasensitive
                                                                   nonenzymatic  detection  of  glucose[J].  Journal  of  Electroanalytical
                                                                   Chemistry, 2017, 785(15): 172-179.
                                                               [12]  Zhao  J  W,  Li  Y  Z,  Ji  F,  et al.  Syntheses,  structures  and
                                                                   electrochemical  properties  of  a  class  of  1D  double  chain
                                                                   polyoxotungstate  hybrids  [H 2d-ap][Cu(Dap) 2] 0.5[Cu(Dap) 2(H 2O)]
                                                                   [Ln(H 2O) 3(Α-GeW 11O 39)]·3H 2O[J].  Dalton  Transactions,  2014,
                                                                   43(15): 5694-5706.
            图 7  CuS/GO 纳米复合材料光催化降解不同有机物的机                     [13]  Lee H, Kwak Su B, Park N K, et al. Assembly of a check-patterned
                                                                   CuS x-TiO 2 film with an electron-rich pool and its application for the
                  理图                                               photoreduction  of  carbon  dioxide  to  methane[J].  Applied  Surface
            Fig. 7    Schematic of  the  mechanisms for the different   Science, 2017, 393(30): 385-396.
                    reactions over CuS/GO nanocomposite        [14]  Bao  L,  Zhang  Z  L,  Tian  Z  Q,  et al.  Electrochemical  tuning  of
                                                                   luminescent  carbon  nanodots:  From  preparation  to  luminescence
                                                                   mechanism[J]. Advanced Materials, 2011, 23(48): 5801-5806.
                                     –
                                            +
                        C  u  S     +     hv  →  e (CB)+h (VB)  (反应 1)   [15]  Dubale A A, Tamirat A G, Chen H M, et al. A highly stable CuS and
                                                                   CuS-Pt modified Cu 2O/CuO  heterostructure  as  an  efficient
                               –
                                         –
                              e +O 2   →·O 2      (反应 2)           photocathode  for  the  hydrogen  evolution  reaction[J].  Journal  of
                                                                   Materials Chemistry A, 2016, 4: 2205-2216.
                                    –
                               +
                              h +OH →·OH          (反应 3)       [16]  Liu P B, Huang Y, Yan J, et al. CuS nanoplatelets arrays grown on
                                                                   graphene nanosheets as advanced electrode materials for supercapacitor
                           –
              TC+ ·OH+ ·O 2   →  中间产物  →小分子(反应 4)                  applications[J]. ACS Applied Materials Interfaces, 2016, 8(8): 5536-5546.
                                                               [17]  Zheng  J  H,  Hu  Y  D,  Zhang  L.  Design  and  construction  of
                              –
               Rh-B + ·OH+ ·O 2   →  中间产物  →H 2 O +CO 2            bifunctional  magnetically  recyclable  3D  CoMn 2O 4/CFs  hybrid  as
                                                                   adsorptive photocatalyst for the effective removal of contaminants[J].
                                                  (反应 5)           Physical Chemistry Chemical Physics, 2017, 19(36): 25044-25051.
                                                               [18]  Yu Xiuna (于秀娜). Preparation of micro/nano-composite photocatalyst
                                                                   and study on the degradation mechanism based on antibiotic wastewater
            3   结论                                                 degradation[D]. Zhenjiang: Jiangsu University (江苏大学): 2015.
                                                               [19]  Roland  M.  Semiconductor  composites:Strategies  for  enhancing
                                                                   charge  carrier  separation  to  improve  photocatalytic  activity[J].
                 本文通过一锅水热法制备出一种具有很好催化                              Advance Functional Materials, 2014, 24(17): 2421-2440.
   71   72   73   74   75   76   77   78   79   80   81