Page 140 - 201903
P. 140
·486· 精细化工 FINE CHEMICALS 第 36 卷
membrane[J]. Energy & Environmental Science, 2014, 7(12):
4053-4060.
[6] Nijem N, Wu H H, Canepa P, et al. Tuning the gate opening pressure
of metal-organic frameworks (MOFs) for the selective separation of
hydrocarbons[J]. Journal of the American Chemical Society, 2012,
134(37): 15201-15204.
[7] Wannapaiboon S, Tu M, Fischer R A. Liquid phase heteroepitaxial
growth of moisture-tolerant MOF-5 isotype thin films and assessment
of the sorption properties by quartz crystal microbalance[J].
Advanced Functional Materials, 2014, 24(18): 2696-2705.
[8] Lu C J, Ben T, Xu S X, et al. Electrochemical synthesis of a
microporous conductive polymer based on a metal-organic
framework thin film[J]. Angewandte Chemie-international Edition,
2014, 53(25): 6454-6458.
[9] Talin A A, Centrone A, Ford A C, et al. Tunable electrical
conductivity in metal-organic framework thin-film devices[J]. Science,
图 9 NH 2 -MIL-125(Ti)可见光下光催化环己烷氧化机理 2014, 343(6166): 66-69.
[10] Yoon S M, Warren S C, Grzybowski B A. Storage of electrical
示意图(≥420 nm) information in metal-organic-framework memristors[J]. Angewandte
Fig. 9 Possible mechanism of photocatalytic oxidation of Chemie-international Edition, 2014, 53(17): 4437-4441.
cyclohexane over NH 2 -MIL-125(Ti) under visible- [11] Zeng M H, Yin Z, Tan Y X, et al. Nanoporous Cobalt (Ⅱ) MOF
light irradiation (≥420 nm) exhibiting four magnetic ground states and changes in gas sorption
upon post-synthetic modification[J]. Journal of the American Chemical
Society, 2014, 136(12): 4680-4688.
3 结论 [12] Bi Y, Ouyang S, Umezawa N, et al. Facet effect of single-crystalline
Ag 3PO 4 sub-microcrystals on photocatalytic properties[J]. Journal of
采用调变反应溶剂体积比获得不同形貌的 the American Chemical Society, 2011, 133(17): 6490-6492.
[13] He Z, Jiang L, Da W, et al. Simultaneous oxidation of p-chlorophenol
NH 2 -MIL-125(Ti)晶体,随着溶剂 DMF 与 MeOH 体 and reduction of Cr (Ⅵ) on fluorinated anatase TiO 2 nanosheets with
积比从 3.0:1.0 逐渐增加到 9.0:1.0,晶体的形貌发生 dominant {001} facets under visible irradiation}[J]. Industrial &
Engineering Chemistry Research, 2015, 54(3): 808-818.
圆形片状→十面体→八面体改变。将圆形片状、十 [14] Hu S, Liu M, Guo X, et al. Effect of titanium ester on synthesizing
NH 2-MIL-125 (Ti): morphology changes from circular plate to
面体、八面体的 NH 2 -MIL-125(Ti)晶体用于光催化环 octahedron and rhombic dodecahedron[J]. Journal of Solid State
己烷氧化反应发现,光催化环己烷转化率由 0.270% Chemistry, 2018, 262: 237-243.
[15] Zlotea C, Phanon D, Mazaj M, et al. Effect of NH 2 and CF 3
降低到 0.067%,环己酮的选择性由 63%降低至 19%, functionalization on the hydrogen sorption properties of MOFs[J].
副产物 CO x 的选择性由 21%增加到 73%,圆形片状 Dalton Translations, 2011, 40(18): 4879-4881.
[16] Fu Y, Sun D, Chen Y, et al. An amine–functionalized titanium
NH 2 -MIL-125(Ti)光催化剂的催化性能最佳,而八面 metal–organic framework photocatalyst with visible-light-induced
体状 NH 2 -MIL-125(Ti)的催化性能最差。结合不同形 activity for CO 2 reduction[J]. Angewandte Chemie, 2012, 51(14):
3364-3367.
貌 NH 2 -MIL-125(Ti)晶体中各个晶面族所占的比例 [17] Yang J M, Liu Q, Sn W Y, et al. Shape and size control and gas
变化,推测光催化反应主要发生在{110}晶面族,而 adsorption of Ni (Ⅱ)-doped MOF-5 nano/microcrystals[J]. Microporous
Mesoporous Mater, 2014, 190(15): 26-31.
CO x 的产生主要是由于{101}晶面族对环己醇和环 [18] Liang R W, Shen L J, Jing F F, et al. NH 2-mediated indium metal–
己酮的进一步氧化所致。本文为不同晶体形貌 organic framework as a novel visible-light-driven photocatalyst for
reduction of the aqueous Cr (Ⅵ)[J]. Applied Catalysis B: Environmental,
NH 2 -MIL-125(Ti)的制备提供了一定的理论依据,为 2015, 162: 245-251.
下一步选择合适形貌的催化剂应用在光催化领域中 [19] Shen L J, Ling S J, Wu W M, et al. Multifunctional NH 2-mediated
zirconium metal-organic framework as an efficient visible-light-
奠定了基础。 driven photocatalyst for selective oxidation of alcohols and reduction
of aqueous Cr (Ⅵ)[J]. Dalton Transactions, 2013, 42: 13649-13657.
参考文献: [20] Zhu W, Liu P J, Xiao S N, et al. Microwave-assisted synthesis of Ag-
doped MOFs-like organotitanium polymer with high activity in visible-
[1] Wu P Y, He C, Wang J, et al. Photoactive chiral metal-organic light driven photocatalytic NO oxidization[J]. Applied Catalysis B:
frameworks for light-driven asymmetric alpha-alkylation of Environmental, 2015, 172/173: 46-51.
aldehydes[J]. Journal of the American Chemical Society, 2012, 134 [21] WU J C S, Cheng Y T. In situ FTIR study of photocatalytic NO
(36): 14991-14999. reaction on photocatalysts under UV irradiation[J]. Journal of
[2] Shen L J, Wu W M, Liang R W, et al. Highly dispersed palladium Catalysis, 2006, 237(2): 393-404.
nanoparticles anchored on UiO-66(NH 2) metal-organic framework as [22] Yang Z W, Xu X Q, Liang X X, et al. MIL-53(Fe)-graphene
a reusable and dual functional visible-light-driven photocatalyst[J]. nanocomposites: Efficient visible-light photocatalysts for the selective
Nanoscale, 2013, 5(19): 9374-9382. oxidation of alcohols[J]. Applied Catalysis B: Environmental, 2016,
[3] Shi L, Wang T, Zhang H, et al. An amine-functionalized iron (Ⅲ) 198: 112-123.
metal-organic framework as efficient visible-light photocatalyst for [23] Xu Jing (许静). Preparation of NH 2-MIL-125 membrane and study of
Cr (Ⅵ) reduction[J]. Advanced Science, 2015, 2(3): 1500006. its separation performance[D]. Dalian: Dalian University of Technology
[4] Ferrando-Soria J, Khajavi H, Serra-Crespo, P, et al. Highly selective (大连理工大学), 2015.
chemical sensing in a luminescent nanoporous magnet[J]. Advanced [24] Fu Y H, Sun D R, Chen Y J, et al. An amine-functionalized titanium
Materials, 2012, 24(41): 5625-5629. metal-organic framework photocatalyst with visible-light-induced
[5] Kang Z X, Xue M, Fan L L, et al. Highly selective sieving of small activity for CO 2 reduction[J]. Angewandte Chemie International
gas molecules by using an ultra-microporous metal-organic framework Edition, 2012, 51(14): 3364-3367.