Page 188 - 201904
P. 188

·714·                             精细化工   FINE CHEMICALS                                  第 36 卷

            3    结论                                                promoting the synthesis of natamycin[D]. Wuxi: Jiangnan University
                                                                   (江南大学), 2010.
                                                               [8]   Luo Jianmei (骆健美). Breeding of high-yield strains, optimization
                 本文研究了 L-缬氨酸对纳他霉素生物合成的影
                                                                   of  fermentation  conditions,  fermentation  kinetics  and  solubility  of
            响,结果表明,在 36 h 添加 0.50 g/L L-缬氨酸,纳                      natamycin[D]. Hangzhou: Zhejiang University(浙江大学), 2005.
            他霉素产量为 1.83  g/L,比对照组高 84.85%。在发                   [9]   Liu S, Yu P, Yuan P, et al. Sigma factor WhiG ch, positively regulates
                                                                   natamycin  production  in  Streptomyces chattanoogensis  L10[J].
            酵过程中,缬氨酸能抑制 S.natalensis HW-2 的生长,                     Applied Microbiology and Biotechnology, 2015, 99(6): 2715-2726.
            糖酵解速度加快,提高葡萄糖的利用率;PK、PEPC                          [10]  Elsayed  A.  Improvement  in  natamycin  production  by  Streptomyces
                                                                   natalensis  with  the  addition  of  short-chain  carboxylic  acids[J].
            和 PC 酶活性增强,CS 酶活力降低 26.57%,丙酮酸
                                                                   Process Biochemistry, 2013, 48(12): 1831-1838.
            含量最大值在 48  h 达到,比对照组最大值提高了                         [11]  Li Min, Chen Shouwen, Li Junhui, et al. Propanol addition improves
            80.50%,导致 OAA 先积累后降低,转化为丙二酰                            natamycin  biosynthesis  of  Streptomyces natalensis[J].  Applied
                                                                   Biochemistry and Biotechnology, 2014, 172(7): 3424-32.
            辅酶 A 和甲基丙二酰辅酶 A,为纳他霉素的合成提                          [12]  Liu  Yijun  (刘钇君).  Study  on  avermectin  precursors  metabolic
            供了前体,且缓解了底物抑制。研究发现,发酵液                                 engineering [D]. Jinan: Qilu University of Technology, 2015.
            中短链羧酸乙酸、丙酸和 α-酮戊二酸的含量先升高                           [13]  Li Zhenlin (李桢林), Jiang Wei (江维), Wang Yonghong (王永红), et
                                                                   al.  Effect  of  valine,isoleucine  and  leucine  on  the  biosythesis  of
            后减少,并结合乙酰辅酶 A 的浓度变化,说明这 3                              biotechspiramycin[J]. Chinese Journal of Antibiotics (中国抗生素),
            种酸可能转化为乙酰辅酶 A、丙二酰辅酶 A 和甲基                              2007, 32(11): 660-668.
                                                               [14]  Hafner  E,  Holley  B,  Holdom  K,  et al.  Branched-chain  fatty  acid
            丙二酰辅酶 A 等物质,不仅使 S.natalensis HW-2 初
                                                                   requirement for avermectin production by a mutant of Streptomyces
            级代谢得到加强,而且为纳他霉素的合成提供更多                                 avermitilis  lacking  branched-  chain  2-oxo  acid  dehydrogenase
            的前体物质。本研究在阐明缬氨酸对纳他霉素生物                                 activity[J]. J Antibiot (Tokyo), 1991, 44(3): 349-356.
                                                               [15]  Li Xiao (李啸), Chu Ju (储炬), Zhang Siliang (张嗣良), et al. Effects
            合成调控的基础上,为前体供应的代谢工程改造,                                 of biotin and amino acids on biosynthesis of lincomycin[J]. Chinese
            促进纳他霉素积累提供充分的理论依据。                                     Journal of Antibiotics (中国抗生素杂志), 2008, 33(1): 6-13.
                                                               [16]  Farid M A,  Enshasy  H  A, Diwany  A  I,  et al.  Optimization  of  the
            参考文献:                                                  cultivation  medium  for  natamycin  production  by Streptomyces
                                                                   natalensis[J]. Journal of Basic Microbiology, 2000, 3: 157–166
            [1]   Wu H,  Liu  W, Shi L,  et al.  Comparative  genomic  and  regulatory   [17]  Dahong Wang, Lanlan Wei, Ying Zhang et al. Physicochemical and
                 analyses  of  natamycin  production  of  Streptomyces lydicus A02[J].   microbial  responses  of  Streptomyces natalensis  HW-2  to  fungal
                 Scientific Reports, 2017, 7(1): 9114-9126.        elicitor[J]. Applied Microbiology and Biotechnology, 2017, 101(17):
            [2]   Resa  C,  Jagus  R,  Gerschenson  L.  Natamycin  efficiency  for   6705–6712
                 controlling  yeast  growth  in  models  systems  and  on  cheese   [18]  Aparicio  J,  Fouces  R,  Mendes  M,  et al.  A  complex  multienzyme
                 surfaces[J]. Food Control, 2014, 35(1): 101-108.     system encoded by five polyketide synthase genes is involved in the
            [3]   Ho  P,  Luo  J,  Adams  M.  Lactobacilli  and  dairy  propionibacterium   biosynthesis  of  the  26-membered  polyene  macrolide  pimaricin  in
                 with  potential  as  biopreservatives  against  food  fungi  and  yeast   Streptomyces natalensis[J].  Chemistry  and  Biology,  2000,  11:  895-
                 contamination[J].  Applied  Biochemistry  and  Microbiology,  2009,   905.
                 45(4): 414-418.                               [19]  Aparicio J, Barreales E, Payero T, et al. Biotechnological production
            [4]   Li  Yu  (李昱), Wu  Caie (吴彩娥),  Fan  Gongjian  (范龚健),  et al.   and  application  of  the  antibiotic  pimaricin:  biosynthesis  and  its
                 Antimicrobial and preservative effects of natamycin ginkgo fruits[J].   regulation[J]. Applied Microbiology and Biotechnology, 2016, 100:
                 Food Science (食品科学), 2014, 35(4): 220-225.        61-78.
            [5]   Sharma S,  Das  S, Virdi A,  et al.  Re-appraisal  of  topical  1%   [20]  Stirrett  K,  Denoya  C,  Westpheling  J.  Branched-chain  amino  acid
                 voriconazole and 5% natamycin in the treatment of fungal keratitis in   catabolism provides precursors for the  Type  Ⅱ  polyketide antibiotic,
                 a randomised trial[J]. British Journal of Ophthalmology, 2015, 99(9):   actinorhodin, via pathways that are nutrient dependent[J]. Journal of
                 1190-1195.                                        Industrial Microbiology and Biotechnology, 2009, 36(1): 129-137.
            [6]   Sunada A, Kimura  K, Nishi I, et al. (2014) In vitro evaluations of   [21]  Qi  Z,  Zhou  Y,  Kang  Q,  et al.  Directed  accumulation  of  less  toxic
                 topical  agents  to  treat  Acanthamoeba keratitis[J].  Ophthalmology,   pimaricin  derivatives  by  improving  the  efficiency  of  a  polyketide
                 2014, 121(10): 2059-2065.                         synthase  dehydratase  domain[J].  Applied  Microbiology  and
            [7]   Shi  Qiang  (史强).  Study  on  the  promoter  of  fungal  metabolites   Biotechnology, 2017, 101(6): 2427- 2436.
   183   184   185   186   187   188   189   190   191   192   193