Page 188 - 201904
P. 188
·714· 精细化工 FINE CHEMICALS 第 36 卷
3 结论 promoting the synthesis of natamycin[D]. Wuxi: Jiangnan University
(江南大学), 2010.
[8] Luo Jianmei (骆健美). Breeding of high-yield strains, optimization
本文研究了 L-缬氨酸对纳他霉素生物合成的影
of fermentation conditions, fermentation kinetics and solubility of
响,结果表明,在 36 h 添加 0.50 g/L L-缬氨酸,纳 natamycin[D]. Hangzhou: Zhejiang University(浙江大学), 2005.
他霉素产量为 1.83 g/L,比对照组高 84.85%。在发 [9] Liu S, Yu P, Yuan P, et al. Sigma factor WhiG ch, positively regulates
natamycin production in Streptomyces chattanoogensis L10[J].
酵过程中,缬氨酸能抑制 S.natalensis HW-2 的生长, Applied Microbiology and Biotechnology, 2015, 99(6): 2715-2726.
糖酵解速度加快,提高葡萄糖的利用率;PK、PEPC [10] Elsayed A. Improvement in natamycin production by Streptomyces
natalensis with the addition of short-chain carboxylic acids[J].
和 PC 酶活性增强,CS 酶活力降低 26.57%,丙酮酸
Process Biochemistry, 2013, 48(12): 1831-1838.
含量最大值在 48 h 达到,比对照组最大值提高了 [11] Li Min, Chen Shouwen, Li Junhui, et al. Propanol addition improves
80.50%,导致 OAA 先积累后降低,转化为丙二酰 natamycin biosynthesis of Streptomyces natalensis[J]. Applied
Biochemistry and Biotechnology, 2014, 172(7): 3424-32.
辅酶 A 和甲基丙二酰辅酶 A,为纳他霉素的合成提 [12] Liu Yijun (刘钇君). Study on avermectin precursors metabolic
供了前体,且缓解了底物抑制。研究发现,发酵液 engineering [D]. Jinan: Qilu University of Technology, 2015.
中短链羧酸乙酸、丙酸和 α-酮戊二酸的含量先升高 [13] Li Zhenlin (李桢林), Jiang Wei (江维), Wang Yonghong (王永红), et
al. Effect of valine,isoleucine and leucine on the biosythesis of
后减少,并结合乙酰辅酶 A 的浓度变化,说明这 3 biotechspiramycin[J]. Chinese Journal of Antibiotics (中国抗生素),
种酸可能转化为乙酰辅酶 A、丙二酰辅酶 A 和甲基 2007, 32(11): 660-668.
[14] Hafner E, Holley B, Holdom K, et al. Branched-chain fatty acid
丙二酰辅酶 A 等物质,不仅使 S.natalensis HW-2 初
requirement for avermectin production by a mutant of Streptomyces
级代谢得到加强,而且为纳他霉素的合成提供更多 avermitilis lacking branched- chain 2-oxo acid dehydrogenase
的前体物质。本研究在阐明缬氨酸对纳他霉素生物 activity[J]. J Antibiot (Tokyo), 1991, 44(3): 349-356.
[15] Li Xiao (李啸), Chu Ju (储炬), Zhang Siliang (张嗣良), et al. Effects
合成调控的基础上,为前体供应的代谢工程改造, of biotin and amino acids on biosynthesis of lincomycin[J]. Chinese
促进纳他霉素积累提供充分的理论依据。 Journal of Antibiotics (中国抗生素杂志), 2008, 33(1): 6-13.
[16] Farid M A, Enshasy H A, Diwany A I, et al. Optimization of the
参考文献: cultivation medium for natamycin production by Streptomyces
natalensis[J]. Journal of Basic Microbiology, 2000, 3: 157–166
[1] Wu H, Liu W, Shi L, et al. Comparative genomic and regulatory [17] Dahong Wang, Lanlan Wei, Ying Zhang et al. Physicochemical and
analyses of natamycin production of Streptomyces lydicus A02[J]. microbial responses of Streptomyces natalensis HW-2 to fungal
Scientific Reports, 2017, 7(1): 9114-9126. elicitor[J]. Applied Microbiology and Biotechnology, 2017, 101(17):
[2] Resa C, Jagus R, Gerschenson L. Natamycin efficiency for 6705–6712
controlling yeast growth in models systems and on cheese [18] Aparicio J, Fouces R, Mendes M, et al. A complex multienzyme
surfaces[J]. Food Control, 2014, 35(1): 101-108. system encoded by five polyketide synthase genes is involved in the
[3] Ho P, Luo J, Adams M. Lactobacilli and dairy propionibacterium biosynthesis of the 26-membered polyene macrolide pimaricin in
with potential as biopreservatives against food fungi and yeast Streptomyces natalensis[J]. Chemistry and Biology, 2000, 11: 895-
contamination[J]. Applied Biochemistry and Microbiology, 2009, 905.
45(4): 414-418. [19] Aparicio J, Barreales E, Payero T, et al. Biotechnological production
[4] Li Yu (李昱), Wu Caie (吴彩娥), Fan Gongjian (范龚健), et al. and application of the antibiotic pimaricin: biosynthesis and its
Antimicrobial and preservative effects of natamycin ginkgo fruits[J]. regulation[J]. Applied Microbiology and Biotechnology, 2016, 100:
Food Science (食品科学), 2014, 35(4): 220-225. 61-78.
[5] Sharma S, Das S, Virdi A, et al. Re-appraisal of topical 1% [20] Stirrett K, Denoya C, Westpheling J. Branched-chain amino acid
voriconazole and 5% natamycin in the treatment of fungal keratitis in catabolism provides precursors for the Type Ⅱ polyketide antibiotic,
a randomised trial[J]. British Journal of Ophthalmology, 2015, 99(9): actinorhodin, via pathways that are nutrient dependent[J]. Journal of
1190-1195. Industrial Microbiology and Biotechnology, 2009, 36(1): 129-137.
[6] Sunada A, Kimura K, Nishi I, et al. (2014) In vitro evaluations of [21] Qi Z, Zhou Y, Kang Q, et al. Directed accumulation of less toxic
topical agents to treat Acanthamoeba keratitis[J]. Ophthalmology, pimaricin derivatives by improving the efficiency of a polyketide
2014, 121(10): 2059-2065. synthase dehydratase domain[J]. Applied Microbiology and
[7] Shi Qiang (史强). Study on the promoter of fungal metabolites Biotechnology, 2017, 101(6): 2427- 2436.