Page 40 - 201904
P. 40
·566· 精细化工 FINE CHEMICALS 第 36 卷
的羟基和羧基与三醋酸纤维素中羰基间的相互作 defines visual transparency of graphene[J]. Science, 2008, 320(5881):
1308-1308.
用,通过熔融法制备了包埋 GO 的三醋酸纤维素 [6] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties
(CTA)平板反渗透复合分离膜,使得改性后 CTA and intrinsic strength of monolayer graphene[J]. Science, 2008,
321(5887): 385-388.
分离膜的拉伸强度从 10.2 MPa 提高到 23.1 MPa,改 [7] Sun Y, Wu Q, Shi G. Graphene based new energy materials[J].
2
性后分离膜的渗透通量〔4.74 L/(m ·h)〕提高为未改 Energy Environ Sci, 2011, 4: 1113-1132.
[8] Ren S, Rong P, Yu Q. Preparations, properties and applications of
2
性分离膜〔1.67 L/(m ·h)〕的 3 倍。 graphene in functional devices: A concise review[J]. Ceramics
在气体阻隔材料方面,Li [70] 等利用 GO 表面的 International, 2018, 44(11): 11940-11955.
[9] Stankovich S, Dikin D, Piner R, et al. Synthesis of graphene-based
羟基、羧基和环氧基与十八胺和马来酸接枝聚丙烯 nanosheets via chemical reduction of exfoliated graphite oxide[J].
进行化学作用制备了改性 GO/马来酸酐接枝聚丙烯 Carbon, 2007, 45(7): 1558-1565.
[10] Novoselov K S, Novoselov V I, Falko V I, et al. A roadmap for
复合材料(mGO-ODA/MAPP)用于气体阻隔。这 graphene[J]. Nature, 2012, 490: 192-200.
[11] Gambhir S, Jalili R, Officer D L, et al. Chemically converted
种材料对氢气和氧气的阻隔效果良好,气体传输率 graphene: Scalable chemistries to enable processing and fabrication[J].
分别降低了 94.1%和 95.0%。 NPG Asia Mater, 2015, 7: e186.
[12] Ren W C, Cheng H M. The global growth of graphene[J]. Nature
Nanotechnology, 2014, 9(10), 726-730.
4 结束语 [13] Nikolaos T, Alina V, Juliane J, et al. Large yield production of high
mobility freely suspended graphene electronic devices on a
由于 GO 特有的结构及性质,目前针对 GO 的 polydimethylglutarimide based organic polymer[J]. J J Appl Phys,
2011, 109(9): 201-215.
制备方法、形成机理及结构控制的研究及其在广泛 [14] Mahroo K, Khadijeh D, Meisam S. Simple and fast preparation of
领域的应用已成为研究热点。但精确控制 GO 的结 graphene oxide@ melamine terephthaldehyde and its PVC
nanocomposite via ultrasonic irradiation: Chemical and thermal
构仍然是制约其应用的关键难题,国内在 GO 制备 resistance study[J]. Ultrasonics Sonochemistry, 2018, 43: 275-284.
及应用方面的研究相较国际水平在机理研究的深度 [15] Zhang X Q, Feng Y Y, Tang S D, et al. Preparation of a graphene
oxide–phthalocyanine hybrid through strong π–π interactions[J].
上尚有一定差距。另外,现有工业化制备方法仍然 Carbon, 2010, 48(1): 211-216.
存在爆炸风险,而且因为使用浓硫酸等物质而导致 [16] Dimiev A M, Tour J M. Mechanism of graphene oxide formation[J].
ACS Nano, 2014, 8(3): 3060-3068.
制备及后处理阶段污染严重,加之反应周期长这对 [17] Kang J H, Kim T, Choi J, et al. Hidden second oxidation step of
于中国已经面临的环境压力更是雪上加霜。从长远 hummers method[J]. Chemistry of Materials, 2016, 28(3): 756-764.
[18] Krishnamoorthy K, Veerapandian M, Yun K, et al. The chemical and
角度看,要拓宽和实现 GO 的应用还存在以下问题: structural analysis of graphene oxide with different degrees of
(1)大多数研究还停留在实验室阶段,未从工业化 oxidation[J]. Carbon, 2013, 53(1): 38-49.
[19] Brodie B C. On the atomic weight of graphite[J]. Philos Trans R Soc
可行性的角度切实解决 GO 制备方法、制备工艺及 London, 1859, 149: 249-259.
原材料的选择问题;(2)研究大都停留在对 GO 宏 [20] Staudenmaier L. Method for representing the graphite acid[J]. Ber
Dtsch Chem Ges, 1898, 31: 1481-1487.
观性能与制备方法和工艺参数间关系的探索上,但 [21] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J
Am Chem Soc, 1958, 80(6): 1339.
对 GO 化学结构的控制及其与性能间的关系,尤其
[22] Eigler S, Hirsch A. Chemistry with graphene and graphene
对 GO 结构控制机理的研究还不够深入;(3)目前 oxidechallenges for synthetic chemists[J]. Angew Chem Int Ed,
2014, 53(30): 7720-7738.
的研究大都没有从产品性能、工业制备可行性及可 [23] Allaedini G, Mahmoudi E, Aminayi P, et al. Optical investigation of
持续性发展的角度上综合考虑产品的污染及回收再 reduced graphene oxide and reduced graphene oxide/CNTs grown
via simple CVD method[J]. Synthetic Metals, 2016, 220: 72-77.
利用问题,这对于将来大规模工业化应用 GO 带来 [24] Chen J, Yao B, Li C, et al. An improved Hummers method for eco-
潜在环境风险。为此,在未来的研究中还需针对以 friendly synthesis of grapheneoxide[J]. Carbon, 2013, 64: 225-229.
[25] Chen J, Li Y, Huang L, et al. High-yield preparation of graphene
上问题,综合考虑工业化生产及可持续性发展的可 oxide from small graphite flakes via an improved Hummers method
行性,加强 GO 化学结构的可控制备与机理研究, with a simple purification process[J]. Carbon, 2015, 81(1): 826-834 .
[26] Sun J J, Yang N X, Sun Z, et al. Fully converting graphite into
为精确实现 GO 的应用提供强有力的保证。 graphene oxide hydrogels by preoxidation with impure manganese
dioxide[J]. ACS Appl Mater Interfaces, 2015, 7(38): 21356-21363.
参考文献: [27] Liou Y, Tsai B, Huang W. An economic route to mass production of
graphene oxide solution for preparing grapheneoxidepapers[J]. Mater
[1] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Sci and Eng B, 2015, 193: 37-40.
Materials, 2007, 6(3): 183-191. [28] Peng L, Xu Z, Liu Z, et al. An iron-based green approach to 1-h
[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect production of single-layer grapheneoxide[J]. Nat Commun, 2015, 6:
in atomically thin carbon films[J]. Science, 2004, 306(5696): 5716.
666-669. [29] Yu C, Wang C, Chen S. Facile access to graphene oxide from
[3] MayorovA S, Gorbachev R V, Morozov S V, et al. Micrometer-scale ferro-induced oxidation[J]. Sci Rep, 2016, 6: 17071.
ballistic transport in encapsulated graphene at room temperature[J]. [30] Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer
Nano Lett, 2011, 11(6): 2396-2399. assembly of ultrathin composite films from micron-sized graphite
[4] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3):
of single-layer graphene[J]. Nano Lett, 2008, 8(3): 902-907. 771-778.
[5] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant
[31] Marcano D, Kosynkin D, Berlin J M, et al. Improved synthesis of