Page 40 - 201904
P. 40

·566·                             精细化工   FINE CHEMICALS                                  第 36 卷

            的羟基和羧基与三醋酸纤维素中羰基间的相互作                                  defines visual transparency of graphene[J]. Science, 2008, 320(5881):
                                                                   1308-1308.
            用,通过熔融法制备了包埋 GO 的三醋酸纤维素                            [6]   Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties
            (CTA)平板反渗透复合分离膜,使得改性后 CTA                              and  intrinsic  strength  of  monolayer  graphene[J].  Science,  2008,
                                                                   321(5887): 385-388.
            分离膜的拉伸强度从 10.2 MPa 提高到 23.1 MPa,改                  [7]   Sun  Y, Wu  Q, Shi G.  Graphene based new energy  materials[J].
                                           2
            性后分离膜的渗透通量〔4.74 L/(m ·h)〕提高为未改                         Energy Environ Sci, 2011, 4: 1113-1132.
                                                               [8]   Ren  S,  Rong  P,  Yu  Q.  Preparations,  properties  and  applications  of
                               2
            性分离膜〔1.67 L/(m ·h)〕的 3 倍。                              graphene  in  functional  devices:  A  concise  review[J].  Ceramics
                 在气体阻隔材料方面,Li          [70] 等利用 GO 表面的             International, 2018, 44(11): 11940-11955.
                                                               [9]   Stankovich S, Dikin D, Piner R, et al. Synthesis of graphene-based
            羟基、羧基和环氧基与十八胺和马来酸接枝聚丙烯                                 nanosheets  via  chemical  reduction  of  exfoliated  graphite  oxide[J].
            进行化学作用制备了改性 GO/马来酸酐接枝聚丙烯                               Carbon, 2007, 45(7): 1558-1565.
                                                               [10]  Novoselov  K  S,  Novoselov  V  I,  Falko  V  I,  et al.  A  roadmap  for
            复合材料(mGO-ODA/MAPP)用于气体阻隔。这                             graphene[J]. Nature, 2012, 490: 192-200.
                                                               [11]  Gambhir  S, Jalili  R, Officer D L,  et al.  Chemically  converted
            种材料对氢气和氧气的阻隔效果良好,气体传输率                                 graphene: Scalable chemistries to enable processing and fabrication[J].
            分别降低了 94.1%和 95.0%。                                    NPG Asia Mater, 2015, 7: e186.
                                                               [12]  Ren  W  C,  Cheng  H  M.  The  global  growth  of  graphene[J].  Nature
                                                                   Nanotechnology, 2014, 9(10), 726-730.
            4   结束语                                            [13]  Nikolaos T, Alina V, Juliane J, et al. Large yield production of high
                                                                   mobility  freely  suspended  graphene  electronic  devices  on  a
                 由于 GO 特有的结构及性质,目前针对 GO 的                          polydimethylglutarimide  based  organic  polymer[J].  J  J  Appl  Phys,
                                                                   2011, 109(9): 201-215.
            制备方法、形成机理及结构控制的研究及其在广泛                             [14]  Mahroo  K,  Khadijeh  D,  Meisam  S.  Simple  and  fast  preparation  of
            领域的应用已成为研究热点。但精确控制 GO 的结                               graphene  oxide@  melamine  terephthaldehyde  and  its  PVC
                                                                   nanocomposite  via  ultrasonic  irradiation:  Chemical  and  thermal
            构仍然是制约其应用的关键难题,国内在 GO 制备                               resistance study[J]. Ultrasonics Sonochemistry, 2018, 43: 275-284.
            及应用方面的研究相较国际水平在机理研究的深度                             [15]  Zhang X Q, Feng Y Y, Tang S D, et al. Preparation of a graphene
                                                                   oxide–phthalocyanine  hybrid  through  strong  π–π  interactions[J].
            上尚有一定差距。另外,现有工业化制备方法仍然                                 Carbon, 2010, 48(1): 211-216.
            存在爆炸风险,而且因为使用浓硫酸等物质而导致                             [16]  Dimiev A M, Tour J M. Mechanism of graphene oxide formation[J].
                                                                   ACS Nano, 2014, 8(3): 3060-3068.
            制备及后处理阶段污染严重,加之反应周期长这对                             [17]  Kang  J  H,  Kim  T,  Choi  J,  et al.  Hidden  second  oxidation  step  of
            于中国已经面临的环境压力更是雪上加霜。从长远                                 hummers method[J]. Chemistry of Materials, 2016, 28(3): 756-764.
                                                               [18]  Krishnamoorthy K, Veerapandian M, Yun K, et al. The chemical and
            角度看,要拓宽和实现 GO 的应用还存在以下问题:                              structural  analysis  of  graphene  oxide  with  different  degrees  of
            (1)大多数研究还停留在实验室阶段,未从工业化                                oxidation[J]. Carbon, 2013, 53(1): 38-49.
                                                               [19]  Brodie B C. On the atomic weight of graphite[J]. Philos Trans R Soc
            可行性的角度切实解决 GO 制备方法、制备工艺及                               London, 1859, 149: 249-259.
            原材料的选择问题;(2)研究大都停留在对 GO 宏                          [20]  Staudenmaier  L.  Method  for  representing  the  graphite  acid[J].  Ber
                                                                   Dtsch Chem Ges, 1898, 31: 1481-1487.
            观性能与制备方法和工艺参数间关系的探索上,但                             [21]  Hummers  W  S,  Offeman  R  E.  Preparation  of  graphitic  oxide[J].  J
                                                                   Am Chem Soc, 1958, 80(6): 1339.
            对 GO 化学结构的控制及其与性能间的关系,尤其
                                                               [22]  Eigler  S,  Hirsch  A.  Chemistry  with  graphene  and  graphene
            对 GO 结构控制机理的研究还不够深入;(3)目前                              oxidechallenges  for  synthetic  chemists[J].  Angew  Chem  Int  Ed,
                                                                   2014, 53(30): 7720-7738.
            的研究大都没有从产品性能、工业制备可行性及可                             [23]  Allaedini G, Mahmoudi E, Aminayi P, et al. Optical investigation of
            持续性发展的角度上综合考虑产品的污染及回收再                                 reduced  graphene  oxide  and  reduced  graphene  oxide/CNTs  grown
                                                                   via simple CVD method[J]. Synthetic Metals, 2016, 220: 72-77.
            利用问题,这对于将来大规模工业化应用 GO 带来                           [24]  Chen J, Yao B, Li C, et al. An improved Hummers method for eco-
            潜在环境风险。为此,在未来的研究中还需针对以                                 friendly synthesis of grapheneoxide[J]. Carbon, 2013, 64: 225-229.
                                                               [25]  Chen  J,  Li  Y,  Huang  L,  et al.  High-yield  preparation  of  graphene
            上问题,综合考虑工业化生产及可持续性发展的可                                 oxide from small graphite flakes via an improved Hummers method
            行性,加强 GO 化学结构的可控制备与机理研究,                               with a simple purification process[J]. Carbon, 2015, 81(1): 826-834 .
                                                               [26]  Sun  J  J,  Yang  N  X,  Sun  Z,  et al.  Fully  converting  graphite  into
            为精确实现 GO 的应用提供强有力的保证。                                  graphene  oxide  hydrogels  by  preoxidation  with  impure  manganese
                                                                   dioxide[J]. ACS Appl Mater Interfaces, 2015, 7(38): 21356-21363.
            参考文献:                                              [27]  Liou Y, Tsai B, Huang W. An economic route to mass production of
                                                                   graphene oxide solution for preparing grapheneoxidepapers[J]. Mater
            [1]   Geim  A  K,  Novoselov  K  S.  The  rise  of  graphene[J].  Nature   Sci and Eng B, 2015, 193: 37-40.
                 Materials, 2007, 6(3): 183-191.               [28]  Peng  L,  Xu  Z,  Liu  Z,  et al.  An  iron-based  green  approach  to  1-h
            [2]   Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect   production of single-layer grapheneoxide[J]. Nat Commun, 2015, 6:
                 in  atomically  thin  carbon  films[J].  Science,  2004,  306(5696):   5716.
                 666-669.                                      [29]  Yu  C,  Wang  C,  Chen  S.  Facile  access  to  graphene  oxide  from
            [3]   MayorovA S, Gorbachev R V, Morozov S V, et al. Micrometer-scale   ferro-induced oxidation[J]. Sci Rep, 2016, 6: 17071.
                 ballistic transport in encapsulated graphene at room temperature[J].   [30]  Kovtyukhova  N  I,  Ollivier  P  J,  Martin  B  R,  et al.  Layer-by-layer
                 Nano Lett, 2011, 11(6): 2396-2399.                assembly  of  ultrathin  composite  films  from  micron-sized  graphite
            [4]   Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity   oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3):
                 of single-layer graphene[J]. Nano Lett, 2008, 8(3): 902-907.     771-778.
            [5]   Nair R R,  Blake  P, Grigorenko  A  N,  et al.  Fine  structure  constant
                                                               [31]  Marcano D, Kosynkin D, Berlin J M, et al. Improved synthesis of
   35   36   37   38   39   40   41   42   43   44   45