Page 95 - 201904
P. 95
第 4 期 张 奇,等: Fe 3 O 4 @SiO 2 @IPDI-HEA 改性水性有机硅聚氨酯光固化膜的性能 ·621·
IPDI-HEA 的质量分数为 1.5%时,固化膜在 0~1× waterborne coatings[J]. China Coatings (中国涂料), 2017, 32(7): 1-6.
7
10 Hz 内的介 电常 数均在 4 以上 。因 此, [2] Cui Fuhong (崔芙红). Advances in the study of waterborne uv-
curable coatings[J]. Guangdong Chemical (广东化工), 2013, 40(10):
Fe 3 O 4 @SiO 2 @IPDI-HEA 有望作为填料加入光固化
99-100.
材料中制备无线电波吸收材料,并可通过改变其含 [3] Yu F, Xu X, Lin N, et al. Structural engineering of waterborne
量来调节材料的吸波能力。 polyurethane for high performance waterproof coatings[J]. Rsc
Advances, 2015, 5(89): 72544-72552.
[4] Xu H, Qiu F, Wang Y, et al. Preparation, mechanical properties of
waterborne polyurethane and crosslinked polyurethane-acrylate
composite[J]. Journal of Applied Polymer Science, 2012, 124(2):
958-968.
[5] Zhang Y, Shao L, Dong D, et al. Enhancement of water and organic
solvent resistances of a waterborne polyurethane film by incorporating
liquid polysulfide[J]. Rsc Advances, 2016, 6(21): 17163-17171.
[6] Liu H, Song J, Shang S, et al. Cellulose nanocrystal/silver
nanoparticle composites as bifunctional nanofillers within waterborne
polyurethane[J]. Acs Applied Materials & Interfaces, 2012, 4(5):
2413-2419.
[7] Wang Yan (王寅), Fu Heqing (傅和青), Yan Caibing (颜财彬), et al.
Progress in the study of nanomaterials modified waterborne
polyurethane[J]. Chemical progress ( 化工进 展 ), 2015, 34(2):
463-469.
[8] Hou Faqiu (侯发秋), Chen Yongjun (陈永军), Qing Ning (卿宁).
Research progress of nano-SiO 2 modified waterborne
polyurethane[J]. Materials Guide (材料导报), 2013, 27(s1): 66-69.
[9] Zhang S, Chen Z, Guo M, et al. Waterborne UV-curable
polycarbonate polyurethane nanocomposites based on
polydimethylsiloxane and colloidal silica with enhanced mechanical
and surface properties[J]. Rsc Advances, 2014, 4(58): 30938-30947.
[10] Lv C, Hu L, Yang Y, et al. Waterborne UV-curable polyurethane
图 7 不同 Fe 3 O 4 @SiO 2 @IPDI-HEA 质量分数固化膜的介 acrylate/silica nanocomposites for thermochromic coatings[J]. Rsc
Advances, 2015, 5(33): 25730-25737.
电常数(a)和介电损耗(b)
Fig. 7 Dielectric constants (a) and dielectric losses (b) of [11] Zhang R, Huang X, Zhong B, et al. Enhanced microwave absorption
cured films with different Fe 3 O 4 @SiO 2 @IPDI-HEA properties of ferroferric oxide/graphene composites with a controllable
mass fraction microstructure[J]. Rsc Advances, 2016, 6(21): 16952-16962.
[12] Chen S, Zhang S, Li Y, et al. Synthesis and properties of novel UV -
3 结论 curable hyperbranched waterborne polyurethane/Fe 3O 4 nanocomposite
films with excellent magnetic properties[J]. Rsc Advances, 2014,
5(6): 4355-4363.
(1)设计合成了 Fe 3 O 4 @SiO 2 @IPDI-HEA 磁性
[13] Chen S, Zhang S, Tao J, et al. Synthesis and characterization of novel
纳米粒子,该纳米粒子的加入提高了固化膜的耐热 covalently linked waterborne polyurethane/Fe 3O 4 nanocomposite
性和拉伸强度,添加 Fe 3 O 4 @SiO 2 @IPDI-HEA 的质 films with superior magnetic, conductive properties and high latex
量分数为 1.5%时,固化膜的 T 5% 增加了 21.9 ℃,拉 storage stability[J]. Chemical Engineering Journal, 2016, 286:
249-258.
伸强度增加了 6.9 MPa。 [14] Tian Ailin (田爱林). Synthesis of functional magnetic nanoparticles
(2)该纳米粒子的加入对杂化体系的光聚合性 and application of chiral separation [D]. Beijing: Beijing University
能影响不大,各体系双键转化率均在 85%以上。 of Chemical Technology (北京化工大学), 2013.
[15] Xiong Jun (熊军), Sun Fang (孙芳), Du Hongguang (杜洪光).
(3)该纳米粒子可以提高光固化膜的介电常数
Dibutylamine titration for the determination of isocyanate in
和介电损耗,有望用于光固化吸波材料。 polyurethane[J]. Analysis Laboratory (分析试验室), 2007, 26(8):
73-76.
参考文献: [16] Habib E, Zhu X X. Photo-calorimetry method optimization for the
[1] Zhang Jing (张静), Guo Yongliang (郭永亮), Guo Junhong (郭军红), study of light-initiated radical polymerization of dental resins[J].
et al. Progress in the study of environmentally friendly uv-curable Polymer, 2018, 135: 178-184.