Page 136 - 201905
P. 136

·904·                             精细化工   FINE CHEMICALS                                  第 36 卷

                 Environmental B:    Catalysis Applied, 2014, 144(1): 622-630.     [24]  Du  X  R,  Zou  G  J,  Wang  Z  H,  et al.  A  scalable  chemical  route  to
            [10]  Chang  C,  Fu  Y,  Hu  M,  et al.  Photodegradation  of  bisphenol  A  by   soluble  acidified  graphitic  carbon  nitride:  An  ideal  precursor  for
                 highly  stable  palladium-doped  mesoporous  graphite  carbon  nitride   isolated  ultrathin  g-C 3N 4  nanosheets[J].  Nanoscale,  2015,  7(19):
                 (Pd/mpg-C 3N 4)   under   simulated   solar   light   irradiation[J].   8701-8706.
                 Environmental B:    Catalysis Applied, 2013, 142(5): 553-560.     [25]  Zhang J S, Zhang M W, Lin L H, et al. Sol processing of conjugated
            [11]  Zhang J S, Chen X F, Takanabe K, et al. Synthesis of a carbon nitride   carbon  nitride  powders  for  thin-film  fabrication[J].  Angewandte
                 structure  for  visible-light  catalysis  by  copolymerization[J].   Chemie International Edition, 2015, 54(21): 6297-6301.
                 Angewandte Chemie International Edition, 2010, 49(2): 441-444.     [26]  Zhou Z, Wang J, Yu J, et al. Dissolution and liquid crystals phase of
            [12]  Pan C S,  Xu J,  Wang  Y  J,  et al.  Dramatic  activity  of  c 3n 4/bipo 4   2d  polymeric  carbon  nitride[J].  Journal  of  the  Chemical  Society,
                 photocatalyst with core/shell structure formed by self- assembly[J].   2015, 137(6): 2179-2182.    American
                 Advanced Functional Materials, 2012, 22(7): 1518- 1524.     [27]  Kim Y I, Atherton S J, Brigham E S, et al. Sensitized layered metal
            [13]  Wang X C, Maeda K, Chen X F, et al. Polymer semiconductors for   oxide semiconductor particles for photochemical hydrogen evolution
                 artificial  photosynthesis:  hydrogen  evolution  by  mesoporous   from nonsacrificial electron donors[J]. Journal Physics, 1993, 97(45):
                 graphitic carbon nitride with visible light[J]. Journal of the American   11802-11810.    Chemical of
                 Chemical Society, 2009, 131(5): 1680-1681.     [28]  Hu S Z, Ma L, You J G, et al. Enhanced visible light photocatalytic
            [14]  Zhou W J, Liu X Y, Cui J J, et al. Control synthesis of rutile TiO 2   performance  of  g-C 3N 4  photocatalysts  co-doped  with  iron  and
                 microspheres,   nanoflowers,   nanotrees   and   nanobelts   via   phosphorus[J]. Science Surface Applied, 2014, 311(30): 164-171.
                 acid-hydrothermal method and their optical properties[J]. Cryst Eng   [29]  Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C 3N 4
                 Comm, 2011, 13(14): 4557-4563.                    fabricated    by  directly  heating  melamine[J].  Langmuir,  2009,
            [15]  Tong J C, Zhang L, Li F, et al. Rapid and high-yield production of   25(17): 10397-10401.
                 g-C 3N 4  nanosheetsvia  chemical  exfoliation  for  photocatalytic  H 2   [30]  Xu J, Zhang L, Shi R, et al. Chemical exfoliation of graphitic carbon
                 evolution[J]. RSC Advance, 2015, 5(107): 88149-88153.     nitride  for  efficient  heterogeneous  photocatalysis[J].  Journal  of,A
            [16]  Campos-Martin  J  M,  Blanco-Brieva  G,  Fierro  J  L  G.  Hydrogen   Chemistry Materials 2013, 1(46): 14766-14772.
                 peroxide synthesis: An outlook beyond the anthraquinone process[J].   [31]  Witoon  T,  Permsirivanich  T,  Kanjanasoontorn  N,  et al.  Direct
                 Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.     synthesis of dimethyl ether from CO 2 hydrogenation over Cu-ZnO-
                                                                        2−
            [17]  Samanta  C.  Direct  synthesis  of  hydrogen  peroxide  from  hydrogen   ZrO 2/SO 4 -ZrO 2  catalysts:  Effects  of  sulfur-to-zirconia  ratios
                 and oxygen: An overview of recent developments in the process[J].   hybrid[J]. Catalysis Science & Technology, 2015, 5(4): 2347-2357.
                 Catalysis Applied A: General, 2008, 350(2): 133-149.     [32]  Li K X, Yan L S, Zeng Z X, et al. Fabrication of H 3PW 12O 40-doped
            [18]  Yamazaki  S,  Siroma  Z,  Senoh  H,  et al.  A  fuel  cell  with  selective   carbon nitride nanotubes by one-step hydrothermal treatment strategy
                 electrocatalysts using hydrogen peroxide as both an electron acceptor   and  their  efficient  visible-light  photocatalytic  activity  toward
                 and a fuel[J]. Journal of Sources Power, 2008, 178(1): 20-25.     representative  aqueous  persistent  organic  pollutants  degradation[J].
            [19]  Shaegh  S  A  M,  Nguyen  N  T,  Ehteshami  S  M  M,  et al.  A   Environmental B:    Catalysis Applied, 2014, 156-157(9): 141-152.
                 membraneless  hydrogen  peroxide  fuel  cell  using  Prussian  Blue  as   [33]  Zhang Y  W, Liu J  H,  Wu G, et al. Porous graphitic carbon nitride
                 cathode  material[J].  Energy  &  Science  Environmental,  2012,  5(8):   synthesized  via  direct  polymerization  of  urea  for  efficient
                 8225-8228.                                        sunlight-driven  photocatalytic  hydrogen  production[J].  Nanoscale,
            [20]  Hu  S  Z,  Qu  X  Y,  Li  P,  et al.  Photocatalytic  oxygen  reduction  to   2012, 4(17): 5300-5303.
                 hydrogen peroxide over copper doped graphitic carbon nitride hollow   [34]  Liu C, Jing L Q, He L M, et al. Phosphate-modified graphitic C 3N 4 as
                 microsphere:  The  effect  of  Cu(I)-N  active  sites[J].  Chemical   efficient  photocatalyst  for  degrading  colorless  pollutants  by
                 Engineering Journal, 2018, 334(15): 410-418.      promoting  O 2  adsorption[J].  Communications  Chemical,  2014,
            [21]  Ding Y, Zhao W, Hu H, et al. [π-C 5H 5N(CH 2) 15CH 3] 3[PW 4O 32]/H 2O 2/   50(16): 1999-2001.
                 ethyl  acetate/alkenes:  A  recyclable  and  environmentally  benign   [35]  Xu Y, Xu H, Wang L, et al. The CNT modified white C 3N 4 composite
                 alkenes  epoxidation  catalytic  system[J].  Green  Chemistry,  2008,   photocatalyst  with  enhanced  visible-light  response  photoactivity[J].
                 10(9): 910-913.                                   Transactions Dalton, 2013, 42(21): 7604-7613.
            [22]  Saha  M,  Das  M,  Nasani  R,  et al.  Targeted  water  soluble  copper-   [36]  He B L, Dong B, Li H L. Preparation and electrochemical properties
                 tetrazolate  complexes:  Interactions  with  biomolecules  and   of  Ag-modified  TiO 2  nanotube  anode  material  for  lithium-ion
                 catecholase  like  activities[J].  Transactions  Dalton,  2015,  44(46):   battery[J]. Electrochemistry Communications, 2007, 9(3): 425-430.
                 20154-20167.                                  [37]  Huang  Q  W,  Tian S  Q,  Zeng  D  W,  et al.  Enhanced  photocatalytic
            [23]  Wang  X  C,  Maeda  K,  Thomas  A,  et al.  A  metal-free  polymeric   activity of chemically bonded tio 2/graphene composites based on the
                 photocatalyst  for  hydrogen  production  from  water  under  visible   effective  interfacial  charge  transfer  through  the  C-Ti  bond[J].
                 light[J]. Nature Materials, 2009, 8(1): 76-80.     Catalysis ACS, 2013, 3(7): 1477-1485.
   131   132   133   134   135   136   137   138   139   140   141