Page 136 - 201905
P. 136
·904· 精细化工 FINE CHEMICALS 第 36 卷
Environmental B: Catalysis Applied, 2014, 144(1): 622-630. [24] Du X R, Zou G J, Wang Z H, et al. A scalable chemical route to
[10] Chang C, Fu Y, Hu M, et al. Photodegradation of bisphenol A by soluble acidified graphitic carbon nitride: An ideal precursor for
highly stable palladium-doped mesoporous graphite carbon nitride isolated ultrathin g-C 3N 4 nanosheets[J]. Nanoscale, 2015, 7(19):
(Pd/mpg-C 3N 4) under simulated solar light irradiation[J]. 8701-8706.
Environmental B: Catalysis Applied, 2013, 142(5): 553-560. [25] Zhang J S, Zhang M W, Lin L H, et al. Sol processing of conjugated
[11] Zhang J S, Chen X F, Takanabe K, et al. Synthesis of a carbon nitride carbon nitride powders for thin-film fabrication[J]. Angewandte
structure for visible-light catalysis by copolymerization[J]. Chemie International Edition, 2015, 54(21): 6297-6301.
Angewandte Chemie International Edition, 2010, 49(2): 441-444. [26] Zhou Z, Wang J, Yu J, et al. Dissolution and liquid crystals phase of
[12] Pan C S, Xu J, Wang Y J, et al. Dramatic activity of c 3n 4/bipo 4 2d polymeric carbon nitride[J]. Journal of the Chemical Society,
photocatalyst with core/shell structure formed by self- assembly[J]. 2015, 137(6): 2179-2182. American
Advanced Functional Materials, 2012, 22(7): 1518- 1524. [27] Kim Y I, Atherton S J, Brigham E S, et al. Sensitized layered metal
[13] Wang X C, Maeda K, Chen X F, et al. Polymer semiconductors for oxide semiconductor particles for photochemical hydrogen evolution
artificial photosynthesis: hydrogen evolution by mesoporous from nonsacrificial electron donors[J]. Journal Physics, 1993, 97(45):
graphitic carbon nitride with visible light[J]. Journal of the American 11802-11810. Chemical of
Chemical Society, 2009, 131(5): 1680-1681. [28] Hu S Z, Ma L, You J G, et al. Enhanced visible light photocatalytic
[14] Zhou W J, Liu X Y, Cui J J, et al. Control synthesis of rutile TiO 2 performance of g-C 3N 4 photocatalysts co-doped with iron and
microspheres, nanoflowers, nanotrees and nanobelts via phosphorus[J]. Science Surface Applied, 2014, 311(30): 164-171.
acid-hydrothermal method and their optical properties[J]. Cryst Eng [29] Yan S C, Li Z S, Zou Z G. Photodegradation performance of g-C 3N 4
Comm, 2011, 13(14): 4557-4563. fabricated by directly heating melamine[J]. Langmuir, 2009,
[15] Tong J C, Zhang L, Li F, et al. Rapid and high-yield production of 25(17): 10397-10401.
g-C 3N 4 nanosheetsvia chemical exfoliation for photocatalytic H 2 [30] Xu J, Zhang L, Shi R, et al. Chemical exfoliation of graphitic carbon
evolution[J]. RSC Advance, 2015, 5(107): 88149-88153. nitride for efficient heterogeneous photocatalysis[J]. Journal of,A
[16] Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Hydrogen Chemistry Materials 2013, 1(46): 14766-14772.
peroxide synthesis: An outlook beyond the anthraquinone process[J]. [31] Witoon T, Permsirivanich T, Kanjanasoontorn N, et al. Direct
Angewandte Chemie International Edition, 2006, 45(42): 6962-6984. synthesis of dimethyl ether from CO 2 hydrogenation over Cu-ZnO-
2−
[17] Samanta C. Direct synthesis of hydrogen peroxide from hydrogen ZrO 2/SO 4 -ZrO 2 catalysts: Effects of sulfur-to-zirconia ratios
and oxygen: An overview of recent developments in the process[J]. hybrid[J]. Catalysis Science & Technology, 2015, 5(4): 2347-2357.
Catalysis Applied A: General, 2008, 350(2): 133-149. [32] Li K X, Yan L S, Zeng Z X, et al. Fabrication of H 3PW 12O 40-doped
[18] Yamazaki S, Siroma Z, Senoh H, et al. A fuel cell with selective carbon nitride nanotubes by one-step hydrothermal treatment strategy
electrocatalysts using hydrogen peroxide as both an electron acceptor and their efficient visible-light photocatalytic activity toward
and a fuel[J]. Journal of Sources Power, 2008, 178(1): 20-25. representative aqueous persistent organic pollutants degradation[J].
[19] Shaegh S A M, Nguyen N T, Ehteshami S M M, et al. A Environmental B: Catalysis Applied, 2014, 156-157(9): 141-152.
membraneless hydrogen peroxide fuel cell using Prussian Blue as [33] Zhang Y W, Liu J H, Wu G, et al. Porous graphitic carbon nitride
cathode material[J]. Energy & Science Environmental, 2012, 5(8): synthesized via direct polymerization of urea for efficient
8225-8228. sunlight-driven photocatalytic hydrogen production[J]. Nanoscale,
[20] Hu S Z, Qu X Y, Li P, et al. Photocatalytic oxygen reduction to 2012, 4(17): 5300-5303.
hydrogen peroxide over copper doped graphitic carbon nitride hollow [34] Liu C, Jing L Q, He L M, et al. Phosphate-modified graphitic C 3N 4 as
microsphere: The effect of Cu(I)-N active sites[J]. Chemical efficient photocatalyst for degrading colorless pollutants by
Engineering Journal, 2018, 334(15): 410-418. promoting O 2 adsorption[J]. Communications Chemical, 2014,
[21] Ding Y, Zhao W, Hu H, et al. [π-C 5H 5N(CH 2) 15CH 3] 3[PW 4O 32]/H 2O 2/ 50(16): 1999-2001.
ethyl acetate/alkenes: A recyclable and environmentally benign [35] Xu Y, Xu H, Wang L, et al. The CNT modified white C 3N 4 composite
alkenes epoxidation catalytic system[J]. Green Chemistry, 2008, photocatalyst with enhanced visible-light response photoactivity[J].
10(9): 910-913. Transactions Dalton, 2013, 42(21): 7604-7613.
[22] Saha M, Das M, Nasani R, et al. Targeted water soluble copper- [36] He B L, Dong B, Li H L. Preparation and electrochemical properties
tetrazolate complexes: Interactions with biomolecules and of Ag-modified TiO 2 nanotube anode material for lithium-ion
catecholase like activities[J]. Transactions Dalton, 2015, 44(46): battery[J]. Electrochemistry Communications, 2007, 9(3): 425-430.
20154-20167. [37] Huang Q W, Tian S Q, Zeng D W, et al. Enhanced photocatalytic
[23] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric activity of chemically bonded tio 2/graphene composites based on the
photocatalyst for hydrogen production from water under visible effective interfacial charge transfer through the C-Ti bond[J].
light[J]. Nature Materials, 2009, 8(1): 76-80. Catalysis ACS, 2013, 3(7): 1477-1485.