Page 202 - 201905
P. 202
·970· 精细化工 FINE CHEMICALS 第 36 卷
(3)使用最优配方:2%皮重 MIL-53-Fe 与 3% Cr-Fe tannage agent reduced by chrome shaves and rion[J]. China
Leather (中国皮革), 2007, 36 (13): 36-39.
皮重铬鞣剂,进行不同时长的超声结合鞣制实验,
[9] Cheng Fengxia (程凤侠),Fang Yingsen (方应森), Zhang Hanbo (张
结果表明,最优配方鞣制皮革耐水洗性来源于 汉波). Properties of leather tanned with Cr-Fe heteronuclear complex
MIL-53-Fe 的框架结构,过度超声作用会大量破坏 tanning agent [J]. West Leather (西部皮革), 2009, 31(15): 8-12.
[10] Sun C Y, Qin C, Wang C G, et al. Chiral nanoporous metal-organic
MIL-53-Fe 的框架结构,使其与铬鞣剂的协同效应 frameworks with high porosity as materials for drug delivery[J].
降低,减弱了鞣制效果并且减弱了成革的耐水洗性, Advanced Materials, 2011, 23(47): 5629-5632.
[11] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and
最优超声时间为 20 min。 separation in metal-organic frameworks[J]. Chemical Society
Reviews, 2009, 38(5): 1477-1504.
参考文献: [12] Jahan M, Liu Z, Loh K P. A Graphene oxide and copper-centered metal
organic framework composite as a tri-functional catalyst for HER, OER,
[1] Lv Shenghua (吕生华). Research status and existing problems and
development tendency of investigation of leather tanning agents [J]. and ORR[J]. Advanced Functional Materials, 2013, 23(43): 5363-5372.
West Leather (西部皮革), 2014, 36(8): 6-11. [13] Ahnfeldt T, Gunzelmann D, Loiseau T, et al. Synthesis and
[2] Thorstensen T C, Theis E R. A semipractical investigation of iron modification of a functionalized 3D open-framework structure with
tannage[J]. Journal of American Leather Chemists Association, 1949, MIL-53 topology[J]. Inorganic Chemistry, 2009, 48(7): 3057-3064.
44: 841-869. [14] Wang Shaoqiang (王少强), Qiu Huayu (邱化玉). Application status
[3] Knapp F. Nature and essential character of the tanning process and of and developing future of acrylic resin retanning agent [J].Leather
leather[J]. Journal of American Leather Chemists Association, 1921, Chemicals (皮革化工), 2007, 24(1): 19-23.
16: 658-660. [15] Zhang Xiaolei (张晓镭), Yang Nan (杨南), Yu Xuhong (余旭红).
[4] Jackson D D, Hou T P. Iron tannage[J]. Journal of American Leather Study on the parameter control in leather retanning process [J].China
Chemists Association, 1921, 16(63): 139-229. Leather (中国皮革), 2006, 35(7): 21-24.
[5] Platon F, Gaidau C, Sescu R. Contributii la tabacirea cu mai putin [16] Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs):
crom sau fara cromprinrealizarca si folosirea unor hetercomplesci Routes to various MOF topologies, morphologies, and composites[J].
tananti [C]//22th IULTCS.Porto Alegre, Brasilia, 1993: 405-410. Chemical Reviews, 2011, 112(2): 933-969.
[6] Gaidau C, Platon F, Badea N. Investigation into iron tannage[J]. [17] Liu R, Yu T, Shi Z, et al. The preparation of metal-organic
Journal of the society of Leather Technologists and Chemists, 1998, frameworks and their biomedical application[J]. Int J Nanomedicine,
82(4): 143-146. 2016, 11: 1187-1200.
[7] Wenzel B M, Marcilio N R, Godinho M, et al. Iron and chromium [18] Sun Q, Liu M, Li K, et al. Facile synthesis of Fe-containing metal
sulfates from ferrochromium alloy for tanning[J]. Chemical Engineering organic framework as highly efficient catalyst for degradation of
Journal, 2010, 165(1): 17-25. phenol at neutral pH and ambient temperature[J]. Crystengcomm,
[8] Cheng Fengxia (程凤侠), Zhang Hanbo (张汉波). Preparation of 2015, 17(37): 7160-7168.
(上接第 944 页) Sources, 2010, 195(4): 1001-1006.
[16] Simões M, Baranton S, Coutanceau C. Electro-oxidation of glycerol
[7] Modibedi R M, Ozoemena K I, Mathe M K. Palladium-based at Pd based nano-catalysts for an application in alkaline fuel cells for
nanocatalysts for alcohol electrooxidation in alkaline media[M]// chemicals and energy cogeneration[J]. Appl Catal B: Environmental,
Electrocatalysis in Fuel Cells. London: Springer, 2013: 129-156. 2010, 93(3/4): 354-362.
[8] Jin C, Wang Z, Huo Q, et al. Different behaviors of PdAu/C catalysts [17] Zhang Z, Xin L, Sun K, et al. Pd–Ni electrocatalysts for efficient
in electrooxidation of propane-1, 3-diol and propane-1, 2-diol[J]. ethanol oxidation reaction in alkaline electrolyte[J]. Int J Hydrogen
Ionics, 2015, 21(3): 841-847. Energy, 2011, 36(20): 12686-12697.
[9] Jian S, Li Y. Ni@ Pd core-shell nanoparticles supported on a [18] Hafez I H, Berber M R, Fujigaya T, et al. Enhancement of platinum
metal-organic framework as highly efficient catalysts for nitroarenes mass activity on the surface of polymer-wrapped carbon
reduction[J]. Chinese Journal of Catalysis, 2016, 37(1): 91-97. nanotube-based fuel cell electrocatalysts[J]. Sci rep, 2014, 4: 6295.
[10] Liu Bing (刘冰), Ma Ronghua (马荣华), Liu Chuntao (刘春涛). [19] Zhang H, Liu G, Shi L, et al. Single-atom catalysts: Emerging
Characterization and Cr(Ⅵ) adsorption capability of activated carbon multifunctional materials in heterogeneous catalysis[J]. Adv Energy
modified with KMnO 4[J]. Chemial Reagents (化学试剂), 2016, Mater, 2018, 8(1): 1701343.
38(9): 819-823. [20] Feng Y, Bin D, Yan B, et al. Porous bimetallic PdNi catalyst with
[11] Han Zhen (韩真), Liu Lianying (刘莲英), Yang Wantai (杨万泰). high electrocatalytic activity for ethanol electrooxidation[J]. J
Oxidation modification of carbon black surface and its water Colloid and Int Science, 2017, 493: 190-197.
dispersibility[J]. Journal of Beijing University of Chemical [21] Qin Y H, Yang H H, Zhang X S, et al. Electrophoretic deposition of
Technology (北京化工大学学报), 2010, 37(1): 78-84. network-like carbon nanofibers as a palladium catalyst support for ethanol
[12] Ding Chunsheng (丁春生), Zhu Qianfen (诸钱芬), Lu Jingke (卢敬 oxidation in alkaline media[J]. Carbon, 2010, 48(12): 3323-3329.
科), et al. Preparation and characterization of activated carbon modified [22] Hu F P, Wang Z, Li Y, et al. Improved performance of Pd electrocatalyst
2+
by KMnO 4 and its Pb adsorption capability[J]. Urban Environment supported on ultrahigh surface area hollow carbon spheres for direct
& Urban Ecology (城市环境与城市生态), 2011 (1): 42-46. alcohol fuel cells[J]. J Power Sources, 2008, 177(1): 61-66.
[13] Dash S, Munichandraiah N. Nanoflowers of PdRu on PEDOT for [23] Huang L, Han Y, Zhang X, et al. One-step synthesis of ultrathin Pt x
electrooxidation of glycerol and its analysis[J]. Electrochim Acta, Pb nerve-like nanowires as robust catalysts for enhanced methanol
2015, 180: 339-352. electrooxidation[J]. Nanoscale, 2017, 9(1): 201-207.
[14] Yang S, Zhang X, Mi H, et al. Pd nanoparticles supported on [24] Xu H, Yan B, Zhang K, et al. Self-supported worm-like PdAg
functionalized multi-walled carbon nanotubes (MWCNTs) and nanoflowers as efficient electrocatalysts towards ethylene glycol
electrooxidation for formic acid[J]. J Power Sources, 2008, 175(1): oxidation[J]. ChemElectroChem, 2017, 4(10): 2527-2534.
26-32. [25] Zhang K, Bin D, Yang B, et al. Ru-assisted synthesis of Pd/Ru
[15] Shen S Y, Zhao T S, Xu J B, et al. Synthesis of PdNi catalysts for the nanodendrites with high activity for ethanol electrooxidation[J].
oxidation of ethanol in alkaline direct ethanol fuel cells[J]. J Power Nanoscale, 2015, 7(29): 12445-12451.