Page 202 - 201905
P. 202

·970·                             精细化工   FINE CHEMICALS                                  第 36 卷

                 (3)使用最优配方:2%皮重 MIL-53-Fe 与 3%                     Cr-Fe  tannage  agent  reduced  by  chrome  shaves  and  rion[J].  China
                                                                   Leather (中国皮革), 2007, 36 (13): 36-39.
            皮重铬鞣剂,进行不同时长的超声结合鞣制实验,
                                                               [9]   Cheng Fengxia (程凤侠),Fang Yingsen (方应森), Zhang Hanbo (张
            结果表明,最优配方鞣制皮革耐水洗性来源于                                   汉波). Properties of leather tanned with Cr-Fe heteronuclear complex
            MIL-53-Fe 的框架结构,过度超声作用会大量破坏                            tanning agent [J]. West Leather (西部皮革), 2009, 31(15): 8-12.
                                                               [10]  Sun C Y, Qin C, Wang C G, et al. Chiral nanoporous metal-organic
            MIL-53-Fe 的框架结构,使其与铬鞣剂的协同效应                            frameworks  with  high  porosity  as  materials  for  drug  delivery[J].
            降低,减弱了鞣制效果并且减弱了成革的耐水洗性,                                Advanced Materials, 2011, 23(47): 5629-5632.
                                                               [11]  Li  J  R,  Kuppler  R  J,  Zhou  H  C.  Selective  gas  adsorption  and
            最优超声时间为 20 min。                                        separation  in  metal-organic  frameworks[J].  Chemical  Society
                                                                   Reviews, 2009, 38(5): 1477-1504.
            参考文献:                                              [12]  Jahan M, Liu Z, Loh K P. A Graphene oxide and copper-centered metal
                                                                   organic framework composite as a tri-functional catalyst for HER, OER,
            [1]   Lv  Shenghua  (吕生华).  Research  status  and  existing  problems  and
                 development tendency of investigation of leather tanning agents [J].   and ORR[J]. Advanced Functional Materials, 2013, 23(43): 5363-5372.
                 West Leather (西部皮革), 2014, 36(8): 6-11.       [13]  Ahnfeldt  T,  Gunzelmann  D,  Loiseau  T,  et al.  Synthesis  and
            [2]   Thorstensen  T  C,  Theis  E  R.  A  semipractical  investigation  of  iron   modification of a functionalized 3D open-framework structure with
                 tannage[J]. Journal of American Leather Chemists Association, 1949,   MIL-53 topology[J]. Inorganic Chemistry, 2009, 48(7): 3057-3064.
                 44: 841-869.                                  [14]  Wang Shaoqiang (王少强), Qiu Huayu (邱化玉). Application status
            [3]   Knapp F. Nature and essential character of the tanning process and of   and  developing  future  of  acrylic  resin  retanning  agent  [J].Leather
                 leather[J]. Journal of American Leather Chemists Association, 1921,   Chemicals (皮革化工), 2007, 24(1): 19-23.
                 16: 658-660.                                  [15]  Zhang  Xiaolei  (张晓镭),  Yang  Nan  (杨南),  Yu  Xuhong  (余旭红).
            [4]   Jackson D D, Hou T P. Iron tannage[J]. Journal of American Leather   Study on the parameter control in leather retanning process [J].China
                 Chemists Association, 1921, 16(63): 139-229.      Leather (中国皮革), 2006, 35(7): 21-24.
            [5]   Platon F, Gaidau C, Sescu R. Contributii la tabacirea  cu  mai putin   [16]  Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs):
                 crom  sau  fara  cromprinrealizarca  si  folosirea  unor  hetercomplesci   Routes to various MOF topologies, morphologies, and composites[J].
                 tananti [C]//22th IULTCS.Porto Alegre, Brasilia, 1993: 405-410.   Chemical Reviews, 2011, 112(2): 933-969.
            [6]   Gaidau  C,  Platon  F,  Badea  N.  Investigation  into  iron  tannage[J].   [17]  Liu R,  Yu T,  Shi  Z,  et al.  The  preparation  of  metal-organic
                 Journal of the society of Leather Technologists and Chemists, 1998,   frameworks and their biomedical application[J]. Int J Nanomedicine,
                 82(4): 143-146.                                   2016, 11: 1187-1200.
            [7]   Wenzel B M, Marcilio N R, Godinho M, et al. Iron and chromium   [18]  Sun Q, Liu M, Li K, et al. Facile synthesis of Fe-containing metal
                 sulfates from ferrochromium alloy for tanning[J]. Chemical Engineering   organic  framework  as  highly  efficient  catalyst  for  degradation  of
                 Journal, 2010, 165(1): 17-25.                     phenol  at  neutral  pH  and  ambient  temperature[J].  Crystengcomm,
            [8]   Cheng  Fengxia  (程凤侠),  Zhang  Hanbo  (张汉波).  Preparation  of     2015, 17(37): 7160-7168.



            (上接第 944 页)                                            Sources, 2010, 195(4): 1001-1006.
                                                               [16]  Simões M, Baranton S, Coutanceau C. Electro-oxidation of glycerol
            [7]   Modibedi  R  M,  Ozoemena  K  I,  Mathe  M  K.  Palladium-based   at Pd based nano-catalysts for an application in alkaline fuel cells for
                 nanocatalysts  for  alcohol  electrooxidation  in  alkaline  media[M]//   chemicals and energy cogeneration[J]. Appl Catal B: Environmental,
                 Electrocatalysis in Fuel Cells. London: Springer, 2013: 129-156.     2010, 93(3/4): 354-362.
            [8]   Jin C, Wang Z, Huo Q, et al. Different behaviors of PdAu/C catalysts   [17]  Zhang  Z,  Xin  L,  Sun  K,  et al.  Pd–Ni  electrocatalysts  for  efficient
                 in  electrooxidation  of  propane-1,  3-diol  and  propane-1,  2-diol[J].   ethanol oxidation reaction in alkaline electrolyte[J]. Int J Hydrogen
                 Ionics, 2015, 21(3): 841-847.                     Energy, 2011, 36(20): 12686-12697.
            [9]   Jian  S,  Li  Y.  Ni@  Pd  core-shell  nanoparticles  supported  on  a   [18]  Hafez I H, Berber M R, Fujigaya T, et al. Enhancement of platinum
                 metal-organic framework as highly efficient catalysts for nitroarenes   mass  activity  on  the  surface  of  polymer-wrapped  carbon
                 reduction[J]. Chinese Journal of Catalysis, 2016, 37(1): 91-97.    nanotube-based fuel cell electrocatalysts[J]. Sci rep, 2014, 4: 6295.
            [10]  Liu  Bing  (刘冰),  Ma  Ronghua  (马荣华), Liu Chuntao (刘春涛).   [19]  Zhang  H,  Liu  G,  Shi  L,  et al.  Single-atom  catalysts:  Emerging
                 Characterization and Cr(Ⅵ) adsorption capability of activated carbon   multifunctional materials in heterogeneous catalysis[J]. Adv Energy
                 modified  with  KMnO 4[J]. Chemial Reagents (化学试剂),  2016,   Mater, 2018, 8(1): 1701343.
                 38(9): 819-823.                               [20]  Feng Y, Bin D, Yan B, et al. Porous bimetallic PdNi catalyst with
            [11]  Han  Zhen  (韩真),  Liu  Lianying  (刘莲英),  Yang  Wantai  (杨万泰).   high  electrocatalytic  activity  for  ethanol  electrooxidation[J]. J
                 Oxidation  modification  of  carbon  black  surface  and  its  water   Colloid and Int Science, 2017, 493: 190-197.
                 dispersibility[J].  Journal  of  Beijing  University  of  Chemical   [21]  Qin Y H, Yang H H, Zhang X S, et al. Electrophoretic deposition of
                 Technology (北京化工大学学报), 2010, 37(1): 78-84.        network-like carbon nanofibers as a palladium catalyst support for ethanol
            [12]  Ding Chunsheng (丁春生), Zhu Qianfen (诸钱芬), Lu Jingke (卢敬  oxidation in alkaline media[J]. Carbon, 2010, 48(12): 3323-3329.
                 科), et al. Preparation and characterization of activated carbon modified   [22]  Hu F P, Wang Z, Li Y, et al. Improved performance of Pd electrocatalyst
                              2+
                 by KMnO 4 and its Pb  adsorption capability[J]. Urban Environment   supported on ultrahigh surface area hollow carbon spheres for direct
                 & Urban Ecology (城市环境与城市生态), 2011 (1): 42-46.     alcohol fuel cells[J]. J Power Sources, 2008, 177(1): 61-66.
            [13]  Dash  S,  Munichandraiah  N.  Nanoflowers  of  PdRu  on  PEDOT  for   [23]  Huang L, Han Y, Zhang X, et al. One-step synthesis of ultrathin Pt x
                 electrooxidation  of  glycerol  and  its  analysis[J].  Electrochim  Acta,   Pb  nerve-like  nanowires  as  robust  catalysts  for  enhanced  methanol
                 2015, 180: 339-352.                               electrooxidation[J]. Nanoscale, 2017, 9(1): 201-207.
            [14]  Yang  S,  Zhang  X,  Mi  H,  et al.  Pd  nanoparticles  supported  on   [24]  Xu  H,  Yan  B,  Zhang  K,  et al.  Self-supported  worm-like  PdAg
                 functionalized  multi-walled  carbon  nanotubes  (MWCNTs)  and   nanoflowers  as  efficient  electrocatalysts  towards  ethylene  glycol
                 electrooxidation for formic acid[J]. J Power Sources, 2008, 175(1):   oxidation[J]. ChemElectroChem, 2017, 4(10): 2527-2534.
                 26-32.                                        [25]  Zhang  K,  Bin  D,  Yang  B,  et al.  Ru-assisted  synthesis  of  Pd/Ru
            [15]  Shen S Y, Zhao T S, Xu J B, et al. Synthesis of PdNi catalysts for the   nanodendrites  with  high  activity  for  ethanol  electrooxidation[J].
                 oxidation of ethanol in alkaline direct ethanol fuel cells[J]. J Power   Nanoscale, 2015, 7(29): 12445-12451.
   197   198   199   200   201   202   203   204   205   206   207