Page 152 - 201906
P. 152

·1158·                            精细化工   FINE CHEMICALS                                  第 36 卷





                    变叶海棠叶总黄酮的分离纯化及体外抗炎活性



                                                                              2
                                                                                           1*
                                                               2
                                     1
                                                  1
                            常柄权 ,李   斌 ,袁瑞瑛 ,卓玛东智 ,黄   山
                    (1.  青岛科技大学  化工学院,山东  青岛    266042;2.  西藏大学  医学院,西藏  拉萨    850000)
                 摘要:通过吸附和解吸附实验,考察并优化了变叶海棠叶中总黄酮的纯化工艺及工艺参数。通过比较 12 种不同
                 极性的大孔吸附树脂对变叶海棠叶总黄酮的吸附、解吸附能力,最终选取 AB-8 树脂进行实验。结果表明,最
                 优静态吸附、解吸附工艺参数为:pH=4 下静态吸附 3  h;体积分数为 70%的乙醇(pH=7)静态解吸附 3  h;最
                 优动态吸附、解吸附工艺参数:以 2 BV/h 的流速上样 9 BV(柱体积)样品溶液,随后在 2 BV/h 流速下,分别
                 以 6 BV 水、6 BV 体积分数为 20%的乙醇、6 BV 体积分数为 40%的乙醇、6 BV 体积分数为 60%的乙醇、6 BV
                 体积分数 80%的乙醇对上样柱进行洗脱,在此条件下分离纯化,变叶海棠叶总黄酮质量分数由 32.79%提高到
                 59.18%。红外光谱显示变叶海棠叶中具备黄酮类物质特征官能团,证明黄酮类物质的存在。对精制后的变叶海
                 棠叶总黄酮进行体外抗炎作用考察,在 50~400  mg/L 质量浓度下,变叶海棠叶总黄酮对脂多糖诱导巨噬细胞炎
                 症反应有明显的抑制作用,可能是通过抑制与炎症相关的基因表达来抑制 NO、IL-6、IL-1β、TNF-α 的分泌。
                 关键词:变叶海棠叶;黄酮;大孔吸附树脂;抗炎活性;  医药与日化原料
                 中图分类号:TQ 914.1      文献标识码:A
                 基金项目:国家自然科学基金(81760779);西藏自治区自然科学基金(XZ2017ZRG-07)




            (上接第 1148 页)                                           derivatives and sweeteners: EP1088829A1 [P]. 2001-04-04.
                                                               [15]  Chattopadhyay  S,  Raychaudhuri  U,  Chakraborty  R.  Artificial
            [3]   Liu  B, Ha  M, Meng  X  Y,  et al.  Molecular  mechanism  of  species-   sweeteners-—Areview[J].  Food  Science  Technology,  2014,  51(4):
                 dependent sweet taste toward artificial sweeteners[J]. The Journal of   611-621.
                 Neuroscience, 2011, 31(30): 11070-11076.      [16]  Otabe A, Fujieda T, Masuyama T. In vitro and in vivo assessment of
            [4]   Nofre C, Tinti J M. Neotame: Discovery, properties, utility[J]. Food   the  mutagenic  activity  of  N-[N-[3-(3-hydroxy-4-methoxyphenyl)
                 Chemistry, 2000, 69(3): 245-257.                  propyl]-L-α-aspartyl]-L-phenylalanine1-methyl  ester,  monohydrate
            [5]   Prakash I, Corliss G, Ponakala R, et al. Neotame: the next generation   (advantame)[J]. Food and Chemical Toxicology,2011, 49(1): S30-S34.
                 sweetener[J]. Food Technology, 2002, 56(7): 36-45.   [17]  Otabe A, Fujieda T, Masuyama T, et al. Advantame-an overview of
            [6]   Tanielyan S K, Augusline R L. Synthesis of 3,3-dimethylbutanol and   the  toxicity  data[J].  Food  and  Chemical  Toxicology,  2011,  49(1):
                 3,3-dimethylbutanal,  important  intermediates  in  the  synthesis  of   S2-S7.
                 neotame[J]. Topics in Catalysis, 2012, 55(7): 625-630.   [18]  Prakash  I,  Wachholder  K.Method  for  the  purification N-[N-(3,  3-
            [7]   Amino  Y,  Mori  K,  Tomiyama  Y,  et al.  Development  of  new,  low   dimethylbutyl)-L-α-aspartyl]-L-phenylalanine-1-methylester:
                 calorie  sweetener:  New  aspartame  derivative[J].  ACS  Symposium   US6784309B2 [P]. 2004-08-31.
                 Series, 2008, 30: 463-480.                    [19]  Capua A D, Goodman M, Amino Y, et al. Conformation analysis of
            [8]   Hayes J E. Transdisciplinary perspectives on sweetness[J]. Chemosensory   aspartame-based  sweeteners  by  NMR  spectroscopy,  molecular
                 Perception, 2008, 1(1): 48-57.                    dynamics  simulations,  and  X-ray  diffraction  studies[J].  Chem  Bio
            [9]   Acree T E, Lindley M. Structure-activity relationship and AH-B after   Chem, 2006, 7(2): 377-387.
                 40 years[J]. ACS Symposium Series, 2008, 6: 96-108.   [20]  Tissot  M,  Phipps  R  J,  Lucas  C,  et al.  Gram-scale  enantioselective
            [10]  Garbow  J  R,  Likos  J  J,  Schroeder  S  A.  Structure,  dynamics,  and   formal  synthesis  of  morphine  through  an  ortho–para  oxidative
                 stability  of  β-cyclodextrin  inclusion  complexes  of  aspartame  and   phenolic coupling strategy[J]. Angewandte Chemistry, 2014, 53(49):
                 neotame[J]. Agriculture Food Chemistry, 2001, 49(4): 2053-2060.   13498-13501.
            [11]  Kunari  A,  Arora  S,  Choudhary  S,  et al.  Comparative  stability  of   [21]  Taylor  J  E, Daniels D S,  Smith A D.  Asymmetric NHC-catalyzed
                 aspartame and neotame in yoghurt[J]. International Journal of Dairy   redox α-amination of α-aroyloxyaldehydes[J]. Organic Letters, 2013,
                 Technology, 2018, 71(1): 81-88.                   15(23): 6058-6061.
            [12]  Amino  Y,  Yuzawa  K,  Takemoto  T,  et al.  Aspartyl  dipeptide  ester   [22]  Amino  Y,  Yuzawa  K,  Takemono  T.  Process  for  producing  and
                 derivatives and sweeteners: JP3959964B2 [P]. 2007-08-15.   purifying aspartame derivative as sweetener: WO2001018034A1[P].
            [13]  Mori  K,  Fujita  S,  Funakoshi  N,  et al.  Process  for  producing   2001-03-15.
                 cinnamaldehyde derivatives, use thereof and the like: JP4706161B2   [23]  Gan  S  F, Yan R  A,  Li A J.  Synthesis  of  N-[N-3-(3-hydroxy-4-
                 [P]. 2011-06-22.                                  methoxyphenyl) propyl]-L-α-aspartyl]-L-phenylalanine-1-methyl ester[J].
            [14]  Amino  Y,  Yuzawa  K,  Takemoto  T.Novel  aspartyl  dipeptide  ester   Science and Technology of Food Industry, 2011, 32(8): 336-338.
   147   148   149   150   151   152   153   154   155   156   157