Page 199 - 201907
P. 199
第 7 期 张 洁,等: CDs/ZnO/g-C 3 N 4 三元组分协同作用促进光催化降解染料 ·1445·
morphological transformations using structural polarity[J]. Advanced
Functional Materials, 2010, 20(18): 3055-3063.
[7] Xiao F. Construction of highly ordered ZnO-TiO 2 nanotube arrays
(ZnO/TNTs) heterostructure for hotocatalytic application[J]. Acs
Applied Materials & Interfaces, 2012, 4(12): 7055-7063.
[8] Wang J, Y Xia, Zhao H, et al. Oxygen defects-mediated Z-scheme
charge separation in g-C 3N 4/ZnO photocatalysts for enhanced
visible-light degradation of 4-chlorophenol and hydrogen evolution[J].
Applied Catalysis B: Environmental, 2017, 206: 406-416.
[9] Xie C, Nie B, Zeng L, et al. Core–shell hterojunction of silicon
nanowire arrays and carbon quantum dots for photovoltaic devices
and self-driven photodetectors[J]. ACS Nano, 2014, 8(4): 4015-4022.
[10] Zhang H, Hui H, Hai M, et al. Carbon quantum dots/Ag 3PO 4
complex photocatalysts with enhanced photocatalytic activity and
stability under visible light[J]. Journal of Materials Chemistry, 2012,
22(21): 10501-10506.
[11] Wang H, Wei Z, Matsui H, et al. Fe 3O 4/carbon quantum dots hybrid
图 10 CDs/ZnO/g-C 3 N 4 光催化机理 nanoflowers for highly active and recyclable visible-light driven
Fig. 10 Mechanism scheme of photocatalytic degration of photocatalyst[J]. Journal of Materials Chemistry A, 2014, 2(38):
Rh B over CDs/ZnO/g-C 3 N 4 15740-15745.
[12] Cao S, Chen H, Fang J, et al. Nitrogen photofixation by ultrathin
amine-functionalized graphitic carbon nitride nanosheets as a
3 结论 gaseous product from thermal polymerization of urea[J]. Applied
Catalysis B: Environmental, 2018, 224: 222-229.
通过浸渍法-热解法制备了 CDs/ZnO/g-C 3 N 4 复 [13] Zhao L, Geng F, Di F, et al. Polyamine-functionalized carbon
nanodots: A novel chemiluminescence probe for selective detection
合催化剂。结果表明,CDs/ZnO/g-C 3 N 4 表现出优异 of iron (Ⅲ) ions[J]. Rsc Advances, 2014, 4(86): 45768-45771.
的光催化性能,其降解罗丹明 B 的效果优于纯 [14] Qu S, Wang X, Lu Q, et al. A biocompatible fluorescent ink based on
g-C 3 N 4 、ZnO 和 ZnO/g-C 3 N 4 。其原因可能是当 CDs water-soluble luminescent carbon nanodots[J]. Angewandte Chemie,
2012, 124(49): 12381-12384.
沉积在 ZnO/g-C 3 N 4 上,CDs 既作为电子受体又作为 [15] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric
photocatalyst for hydrogen production from water under visible light
供体促进电子转移到 ZnO/g-C 3 N 4 表面,ZnO/g-C 3 N 4
[J]. Nature Materials, 2009, 8(1): 76-80.
上的过量电子也可转移到 CDs 上,进一步提高电子 [16] Chow L, Lu pan, Chai G, et al. Synthesis and characterization of
-空穴对的分离率。因此,CDs/ZnO/g-C 3 N 4 光催化剂 Cu-doped ZnO one-dimensional structures for miniaturized sensor
在可见光下具有显着增强的光催化活性。这些性质 applications with faster response[J]. Sensors & Actuators A:
Physical, 2013, 189(2): 399-408.
使 CDs/ZnO/g-C 3 N 4 复合材料成为利用可见光的能 [17] Zhang H, Huang H, Liu Y, et al. Porous and hollow metal-
量和环境应用的有前途的材料。 layer@SiO 2 nanocomposites as stable nanoreactors for hydrocarbon
selective oxidation[J]. Journal of Materials Chemistry, 2012, 22(38):
参考文献: 20182-20185.
[18] Futsuhara M, Yoshioka K, Takai O, et al. Structural, electrical and
[1] Dong G, Zhang Y, Pan Q, et al. A fantastic graphitic carbon nitride optical properties of zinc nitride thin films prepared by reactive rf
(g-C 3N 4) material: electronic structure, photocatalytic and photoelectronic magnetron sputtering[J]. Thin Solid Films, 1998, 322(1/2): 274-281.
properties[J].Journal of Photochemistry and Photobiology C: [19] Zhu Y, Li M, Liu Y, et al. Carbon-doped ZnO hybridized homogeneously
Photochemistry Reviews ,2014, 20: 33-50. with graphitic carbon nitride nanocomposites for photo catalysis[J].
[2] Mamba G, Mishra A. Graphitic carbon nitride (g-C 3N 4) Journal of Physical Chemistry C,2014, 118(20): 10963-10971.
nanocomposites: angewand exciting generation of visible light driven [20] Liu J, Zhang T, Wang Z, et al. Simple pyrolysis of urea into graphitic
photocatalysts for environmental pollution remediation[J]. Appl Catal carbon nitride with recyclable adsorption and photocata lytic
B: Environ, 2016, 198 (1982016): 347-377. activity[J]. Journal of Materials Chemistry, 2011, 21(38): 14398-
[3] Cao S, Low J, Yu J, et al. Polymeric photocatalysts based on 14401.
graphitic carbon nitride[J] Adv Mater, 2015, (27): 2150-2176. [21] Yu Yan (于艳), Yao Bing-hua (姚秉华), Zhang Jie (张洁), et al.
[4] Wang Xin (王鑫), Wang Dandan (王丹丹), Zheng Yongji (郑永杰), Preparation and photocatalytic activity of g-C 3N 4/ZnO composite
et al. Preparation of N-Al/TiO 2 catalysts and visible light degradation photocatalyst [J]. Journal of Synthetic Crystals (人工晶体学报), 2018,
Dyes[J]. Fine Chemicals (精细化工), 2018, 35(8): 1325-1330. 47(1): 131-136, 143.
[5] Zhou Jie (周杰), Guan Guofen (管国锋), Zhu Beibei (朱蓓蓓), et al. [22] Cai Y, Guo F, Zhao Z, et al. Preparation and photocatalytic activity of
Preparation, characterization and photocatalytic activities of Ag/g-C 3N 4/ZnO composite photocatalyst[J]. Applied chemical (应用
g-C 3N 4/ZnO composites[J]. Fine Chemicals (精细化工), 2018, 35(2): 化工), 2016, 45(11): 2029-2033.
228-232, 266. [23] Ko S, Lee D, Kang H, et al. Nanoforest of hydrothermally grown
[6] Kim K, Jeong H, Jeong M, et al. Polymer-templated hydrothermal hierarchical ZnO nanowires for a high efficiency dye-sensitized solar
growth of vertically aligned single-crystal ZnO nanorods and cell[J]. Nano Letters, 2011, 11(2): 666-671.