Page 199 - 201907
P. 199

第 7 期                张   洁,等: CDs/ZnO/g-C 3 N 4 三元组分协同作用促进光催化降解染料                       ·1445·


                                                                   morphological transformations using structural polarity[J]. Advanced
                                                                   Functional Materials, 2010, 20(18): 3055-3063.
                                                               [7]   Xiao  F.  Construction  of  highly  ordered  ZnO-TiO 2  nanotube  arrays
                                                                   (ZnO/TNTs)  heterostructure  for  hotocatalytic  application[J].  Acs
                                                                   Applied Materials & Interfaces, 2012, 4(12): 7055-7063.
                                                               [8]   Wang J, Y Xia, Zhao H, et al. Oxygen defects-mediated Z-scheme
                                                                   charge  separation  in  g-C 3N 4/ZnO  photocatalysts  for  enhanced
                                                                   visible-light degradation of 4-chlorophenol and hydrogen evolution[J].
                                                                   Applied Catalysis B: Environmental, 2017, 206: 406-416.
                                                               [9]   Xie  C,  Nie  B,  Zeng  L,  et al.  Core–shell  hterojunction  of  silicon
                                                                   nanowire  arrays  and  carbon  quantum  dots  for  photovoltaic  devices
                                                                   and self-driven photodetectors[J]. ACS Nano, 2014, 8(4): 4015-4022.
                                                               [10]  Zhang  H,  Hui  H,  Hai  M,  et al.  Carbon  quantum  dots/Ag 3PO 4
                                                                   complex  photocatalysts  with  enhanced  photocatalytic  activity  and
                                                                   stability under visible light[J]. Journal of Materials Chemistry, 2012,
                                                                   22(21): 10501-10506.
                                                               [11]  Wang H, Wei Z, Matsui H, et al. Fe 3O 4/carbon quantum dots hybrid
                     图 10    CDs/ZnO/g-C 3 N 4 光催化机理               nanoflowers  for  highly  active  and  recyclable  visible-light  driven
            Fig. 10    Mechanism scheme of photocatalytic degration of   photocatalyst[J].  Journal  of  Materials  Chemistry  A,  2014,  2(38):
                   Rh B over CDs/ZnO/g-C 3 N 4                     15740-15745.
                                                               [12]  Cao  S,  Chen  H,  Fang  J,  et al.  Nitrogen  photofixation  by  ultrathin
                                                                   amine-functionalized  graphitic  carbon  nitride  nanosheets  as  a
            3    结论                                                gaseous  product  from  thermal  polymerization  of  urea[J].  Applied
                                                                   Catalysis B: Environmental, 2018, 224: 222-229.
                 通过浸渍法-热解法制备了 CDs/ZnO/g-C 3 N 4 复              [13]  Zhao  L,  Geng  F,  Di  F,  et al.  Polyamine-functionalized  carbon
                                                                   nanodots: A novel chemiluminescence probe for selective detection
            合催化剂。结果表明,CDs/ZnO/g-C 3 N 4 表现出优异                      of iron (Ⅲ) ions[J]. Rsc Advances, 2014, 4(86): 45768-45771.
            的光催化性能,其降解罗丹明 B 的效果优于纯                             [14]  Qu S, Wang X, Lu Q, et al. A biocompatible fluorescent ink based on
            g-C 3 N 4 、ZnO 和 ZnO/g-C 3 N 4 。其原因可能是当 CDs            water-soluble luminescent carbon nanodots[J]. Angewandte Chemie,
                                                                   2012, 124(49): 12381-12384.
            沉积在 ZnO/g-C 3 N 4 上,CDs 既作为电子受体又作为                 [15]  Wang  X,  Maeda  K,  Thomas  A,  et al.  A  metal-free  polymeric
                                                                   photocatalyst for hydrogen production from water under visible light
            供体促进电子转移到 ZnO/g-C 3 N 4 表面,ZnO/g-C 3 N 4
                                                                   [J]. Nature Materials, 2009, 8(1): 76-80.
            上的过量电子也可转移到 CDs 上,进一步提高电子                          [16]  Chow  L,  Lu  pan,  Chai  G,  et al.  Synthesis  and  characterization  of
            -空穴对的分离率。因此,CDs/ZnO/g-C 3 N 4 光催化剂                     Cu-doped  ZnO  one-dimensional  structures  for  miniaturized  sensor
            在可见光下具有显着增强的光催化活性。这些性质                                 applications  with  faster  response[J].  Sensors  &  Actuators  A:
                                                                   Physical, 2013, 189(2): 399-408.
            使 CDs/ZnO/g-C 3 N 4 复合材料成为利用可见光的能                  [17]  Zhang  H,  Huang  H,  Liu  Y,  et al.  Porous  and  hollow  metal-
            量和环境应用的有前途的材料。                                         layer@SiO 2 nanocomposites as stable nanoreactors for hydrocarbon
                                                                   selective oxidation[J]. Journal of Materials Chemistry, 2012, 22(38):
            参考文献:                                                  20182-20185.
                                                               [18]  Futsuhara M, Yoshioka K, Takai O, et al. Structural, electrical and
            [1]   Dong G, Zhang Y, Pan Q, et al. A fantastic graphitic carbon nitride   optical  properties  of  zinc  nitride  thin  films  prepared  by  reactive  rf
                 (g-C 3N 4) material: electronic structure, photocatalytic and photoelectronic   magnetron sputtering[J]. Thin Solid Films, 1998, 322(1/2): 274-281.
                 properties[J].Journal  of  Photochemistry  and  Photobiology  C:   [19]  Zhu Y, Li M, Liu Y, et al. Carbon-doped ZnO hybridized homogeneously
                 Photochemistry Reviews ,2014, 20: 33-50.          with graphitic carbon nitride nanocomposites for photo catalysis[J].
            [2]   Mamba  G,  Mishra  A.  Graphitic  carbon  nitride  (g-C 3N 4)   Journal of Physical Chemistry C,2014, 118(20): 10963-10971.
                 nanocomposites: angewand exciting generation of visible light driven   [20]  Liu J, Zhang T, Wang Z, et al. Simple pyrolysis of urea into graphitic
                 photocatalysts for environmental pollution remediation[J]. Appl Catal   carbon  nitride  with  recyclable  adsorption  and  photocata  lytic
                 B: Environ, 2016, 198 (1982016): 347-377.         activity[J].  Journal  of  Materials  Chemistry,  2011,  21(38):  14398-
            [3]   Cao  S, Low J,  Yu J,  et al.  Polymeric  photocatalysts  based  on   14401.
                 graphitic carbon nitride[J] Adv Mater, 2015, (27): 2150-2176.   [21]  Yu  Yan  (于艳),  Yao  Bing-hua  (姚秉华), Zhang Jie (张洁),  et al.
            [4]   Wang Xin (王鑫), Wang Dandan (王丹丹), Zheng Yongji (郑永杰),   Preparation  and  photocatalytic  activity  of  g-C 3N 4/ZnO  composite
                 et al. Preparation of N-Al/TiO 2 catalysts and visible light degradation   photocatalyst [J]. Journal of Synthetic Crystals (人工晶体学报), 2018,
                 Dyes[J]. Fine Chemicals (精细化工), 2018, 35(8): 1325-1330.   47(1): 131-136, 143.
            [5]   Zhou Jie (周杰), Guan Guofen (管国锋), Zhu Beibei (朱蓓蓓), et al.   [22]  Cai Y, Guo F, Zhao Z, et al. Preparation and photocatalytic activity of
                 Preparation,  characterization  and  photocatalytic  activities  of   Ag/g-C 3N 4/ZnO composite photocatalyst[J]. Applied chemical (应用
                 g-C 3N 4/ZnO composites[J]. Fine Chemicals (精细化工), 2018, 35(2):   化工), 2016, 45(11): 2029-2033.
                 228-232, 266.                                 [23]  Ko  S, Lee  D,  Kang H,  et al.  Nanoforest  of  hydrothermally  grown
            [6]   Kim  K,  Jeong  H,  Jeong  M,  et al.  Polymer-templated  hydrothermal   hierarchical ZnO nanowires for a high efficiency dye-sensitized solar
                 growth  of  vertically  aligned  single-crystal  ZnO  nanorods  and     cell[J]. Nano Letters, 2011, 11(2): 666-671.
   194   195   196   197   198   199   200   201   202   203   204