Page 121 - 精细化工2019年第8期
P. 121

第 8 期                         尚城城,等:  异丁烯与醋酸酯化合成醋酸叔丁酯                                   ·1609·


            20 ℃时,异丁烯单程转化率可达 80%,对 TBA 的                           sustainable society[J]. Catalysis Today, 2009, 144(3): 285-291.
            选择性为 95.98%。                                       [10]  , Suwannakarn K,    Lotero E, Jr J G G,et al. A comparative study of
                                                                   gas phase esterification on solid acid catalysts[J]. Catalysis Letters,
                (3)催化剂的选择性已达到 95.98%,但考虑到
                                                                   2007, 114(122): 122-128
            后续分离,利用催化剂酸量和酸强度与烯烃酯化的                             [11]  López  D  E,  Suwannakarn  K,  Bruce  D  A,  et al.  Esterification  and
            规律制备合适的固体酸催化剂以达到更高的选择                                  transesterification  on  tungstated  zirconia:  Effect  of  calcination
            性,同时具有较高的单程转化率。                                        temperature[J]. Journal of Catalysis, 2007, 247(1): 43-50
                                                               [12]  Hideshi  H,  Yoshi  O.  Solid  acid  catalysis[M].  Gao  Zi  (高兹),  Yue
            参考文献:                                                  Yinghong (乐英红), Hua Weiming (华伟明),trans. Shanghai: Fudan
                                                                   University Press, 2015: 177.
            [1]   Shi Fengyong (石凤勇), Li Zhichao (李志超), Fang Kun (方堃), et   [13]  Liu Xuan (刘璇). Study on tert-butyl acetate synthesis[D]. Shanghai:
                 al.  Study  on  alternative  processing  schemes  for  refiner[J].   East China University of Science and Technology (华东理工大学),
                 Sino-Global Energy (中外能源), 2018, 23(4): 63-67.     2010.
            [2]   Zhao Y Y, Mouhib H, Li G H. Conformational analysis of tert-butyl   [14]  Santiesteban  J  G,  Vartuli  J  C,  Han  S,  et al.  Influence  of  the
                 acetate using a combination of microwave spectroscopy and quantum   preparative method on the activity of highly acidic WO x/ZrO 2 and the
                 chemical  calculations[J].  Journal  of  Molecular  Spectroscopy,  2016,   relative acid activity compared with zeolites[J]. Journal of Catalysis,
                 322(1): 38-42.                                    1997, 168(2): 431-441.
            [3]   Huang Yuxin (黄玉鑫), Tang Jihai (汤吉海), Chen Xian (陈献), et   [15]  Liu  H  Y,  Ma  Z,  Chu  Y,  et al.  Surfactant-assisted  synthesis,
                 al. Process simulation of tert-butyl acetate production by distillation   characterization  and  catalytic  properties  of  nanostructure  porous
                 column integrated with side reactors under different temperatures[J].   WO 3/ZrO 2  solid  acid[J].  Colloids  and  Surfaces  A,  2006,  287(1):
                 CIESC Journal (化工学报), 2015, 66(10): 4045-4046.     10-15.
            [4]   Harmer M A,  Sun  Q. Solid acid  catalysis using ion-exchange   [16]  Agustín  M  A,  Gonzalo  P,  Maria  A  A,  et al.  Influence  of  the
                 resins[J]. Applied Catalysis A, 2001, 221(1): 45-62.     preparative route on the properties of WO x-ZrO 2 catalysts: A detailed
            [5]   Xu Bin (徐斌), Huang Hua (黄华), Xie Qiongyu (谢琼玉). Method   structural, spectroscopic, and catalytic study[J]. Journal of Catalysis,
                 for  preparing  and  purifying  tert-butyl  acetate:  CN1884248[P].   2007, 248(2): 288-302.
                 2006-07-04.                                   [17]  Zhou W, Nikolaos S, Xu H, et al. Nature of catalytically active sites
            [6]   Ma Y D, Wang Q L, Hao Y, et al. Zeolite-catalyzed esterification I.   in  the  supported  WO 3/ZrO 2  solid  acid  system:  A  current
                 Synthesis of acetates, benzoates and phthalates[J]. Applied Catalysis   perspective[J]. ACS Catalysis, 2017, 7(3): 2181-2198.
                 A, 1996, 139(51): 51-57.                      [18]  Li Pengfei (李鹏飞), Pang Xianshen (庞先燊). A study on the solid
            [7]   Kirumakki S R,  Nagaraju A N,  Chary  K  V  R. Esterification  of   superacid  catalyst  of  AlCl 3  supported  resin-characterization  of
                 alcohols  with  acetic  acid  over  zeolites  Hβ,  HY  and  HZSM5[J].   catalyst[J].  Speciality  Petrochemicals  (精细石油化工),  1993,  (2):
                 Applied Catalysis A, 2006, 299(1): 185-192.       29-32.
            [8]   Gokulakrishnan  N,  Pandurangan  A,  Sinha  P  K.  Esterification  of   [19]  Cid R, Pecchi G. Potentiometric method for determining the number
                 acetic  acid  with  propanol  isomers  under  autogeneous  pressure:  A   and  relative  strength  of  acid  sites  in  colored  catalysts[J].  Applied
                 catalytic activity study of Al-MCM-41 molecular sieves[J]. Journal   Catalysis, 1985, 14(1): 15-21.
                 of Molecular Catalysis A, 2007, 263(55): 55-61.     [20]  Kozo  T.  New  solid  and  bases  their  catalytic  properties[M].  Zheng
            [9]   Makoto  M.  Recent  progress  in  the  practical  applications  of   Lubin  (郑禄彬)  trans.  Beijing:  Chemical  Industry  Press,  1992:
                 heteropolyacid and perovskite catalysts: Catalytic technology for the     193-194.



            (上接第 1603 页)                                           alkaloids  by  macroporous  adsorption  resin[J].  Chinese  Herbal
                                                                   Medicine (中药材), 2003, 26(9): 669-670.
            [19]  Yan Na (阎娜), Wang Weihua (王炜华), Li Ti (李俶), et al. Study
                                                               [24]  Liu  H  J,  Yan  Z,  Jiang  N, et al.  Purification  of  cordycepin  from
                 on determination of nuciferine salt by HPLC [J]. Food & Machinery
                                                                   Cordyceps  militaris  with  macroporous  resin[J].  Journal  of  Anhui
                 (食品与机械), 2011, 27(3): 71-72.
                                                                   Agricultural University, 2010, 37(2): 209-213.
            [20]  Zhang Q A, Zhang Z Q, Yue X F, et al. Response surface optimization
                                                               [25]  Certification  and  Accreditation  Administration  of  the  People’s
                 of ultrasound-assisted oil extraction from autoclaved almond powder[J].
                                                                   Republic  of  China  (中国国家认证认可监督管理委员会).  SN/T
                 Food Chemistry, 2009, 116(2): 513-518.
            [21]  Hammi K M, Jdey A, Abdelly C, et al. Optimization of ultrasound-   4052—2014: Determination of nuciferine in health foods for export
                 assisted  extraction  of  antioxidant  compounds  from  Tunisian  Zizyphus   (出口保健食品中荷叶碱的测定)[S].  Beijing:  Standards  Press  of
                 lotus fruits using response surface methodology[J]. Food Chemistry,   China, 2014: 2-3.
                 2015, 184: 80-89.                             [26]  Cui  Bingqun  ( 崔炳 群 ).  Purification  of  alkaloids  of  leaves  of
            [22]  Hill W J, Hunter W G. A review of response surface methodology: a   nelumbonucifera gaertn by macroporous adsorption resin [J]. Modern
                 literature survey[J]. Technometrics, 1966, 8(4): 571-590.     Food  Science  and  Technology  ( 现代食品科技 ),  2013,  (7):
            [23]  Zhao  Jun  (赵骏), Li  Xiaonian (李小年).  Purification  of  lotus  leaf   1664-1669.
   116   117   118   119   120   121   122   123   124   125   126