Page 82 - 精细化工2019年第8期
P. 82

·1570·                            精细化工   FINE CHEMICALS                                  第 36 卷

            (1 mmol)尿素,2 mL EtOH,60  ℃反应 96 h。在                    multicomponent Biginelli reaction: bovine serum albumin triggered
                                                                   waste-free synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones[J]. Amino
            此条件下拓展了 11 种底物,取得了最高 63%的产                             Acids, 2013, 44 (3): 1031-1037.
            率。该方法反应条件较为温和,符合绿色化学的基                             [18]  Busto  E,  Gotor-Fernandez  V,  Gotor  V.  Hydrolases:  Catalytically
                                                                   promiscuous enzymes for non-conventional reactions in organic
            本理念,但遗憾的是,该方法的产率还不够理想,                                 synthesis[J]. Chemical Society Reviews, 2010, 39: 4504-4523.
            底物适用范围也有待拓展;并且通过液相色谱测定,                            [19]  Sun H H, Zhang H F, Ang E L, et al. Biocatalysis for the synthesis of
                                                                   pharmaceuticals and pharmaceutical intermediates[J]. Bioorganic &
            发现所有产物均无立体选择性。不过本研究进一步                                 Medicinal Chemistry, 2018, 26(7): 1275-1284.
                                                               [20]  Xie Z B, Sun D Z, Jiang G F, et al. Facile synthesis of bis(indolyl)
            拓展了酶非专一性的应用范围,对推动生物催化在                                 methanes catalyzed by α-chymotrypsin[J]. Molecules, 2014, 19(12):
            有机合成中的应用仍具有积极意义。                                       19665-19677.
                                                               [21]  Xie Zongbo (谢宗波), Zhang Shiguo (张士国), Jiang Guofang (姜国
                                                                   芳),  et al.  pepsin-catalyzed  synthesis  of  2,  3-dihydroquinazolin-
            参考文献:                                                  4(1H)-onederivatives[J]. Chinese Journal of Organic Chemistry (有
            [1]   Puripat  M,  Ramozzi  R,  Hatanaka  M,  et al.  ChemInform  Abstract:   机化学), 2017, 37(2): 514-519.
                 The  Biginelli  reaction  is  a  urea-catalyzed  organocatalytic   [22]  Wu  Q,  Liu  B  K,  Lin  X  F.  Enzymatic  promiscuity  for  organic
                 multicomponent reaction[J]. Cheminform, 2015, 46(37): 6959-6967.     synthesis and cascade process[J]. Current Organic Chemistry, 2010,
            [2]   Simón L, Goodman J M. A model for the enantioselectivity of imine   14(17): 1966-1988.
                 reactions catalyzed by BINOL-phosphoric acid catalysts[J]. Journal   [23]  Chen Y L, Li W, Liu Y, et al. Trypsin-catalyzed direct asymmetric
                 of Organic Chemistry, 2011, 76(6): 1775-1788.     aldol reaction[J]. Journal of Molecular Catalysis B-Enzymatic, 2013,
            [3]   Maksim A Kolosov, Olesia G Kulyk, Muataz J K, et al. An effective   87(3): 83-87.
                 Biginelli-type  synthesis  of  1-methoxy-3,  4-dihydropyrimidin-   [24]  Xie B H, Guan Z, He Y H. Promiscuous enzyme-catalyzed Michael
                 2(1H)-ones[J]. Cheminform, 2015, 46(45): 4666-4669.     addition:  synthesis  of  warfarin  and  derivatives[J].  Journal  of
            [4]   Shamim  Shahbaz,  Khan  Khalid  Mohammed,  Salar  Uzma,  et al.   Chemical Technology and Biotechnology, 2012, 87(12): 1709-1714.
                 5-Acetyl-6-methyl-4-aryl-3,  4-dihydropyrimidin-2(1H)-ones:  As   [25]  Xue Y, Li L P, He Y H, et al. Protease-catalysed direct asymmetric
                 potent urease inhibitors; synthesis, in vitro screening, and molecular   Mannich  reaction  in  organic  solvent[J].  Scientific  Reports,  2012,
                 modeling study[J]. Bioorganic Chemistry, 2018, 76: 37-52.     2(10): 761.
            [5]   Crespo  A,  El  M  A,  Biagini  P,  et al.  Discovery  of  3,   [26]  Jetti S R, Jain S, Bhatewara A, et al. Silica-bonded-propyl sulfamic
                 4-dihydropyrimidin-2(1H)-ones  as  a  novel  class  of  potent  and   acid  as  an  efficient  recyclable  catalyst  for  the  synthesis  of  3,
                 selective  A 2B  sdenosine  receptor  antagonists[J].  ACS  Medicinal   4-dihydropyrimidin-2-(1H)-ones/thiones   under   heterogeneous
                 Chemistry Letters, 2013, 4(11): 1031-1036.        conditions[J]. Chinese Chemical Letters, 2014, 25(3): 469-473.
            [6]   Shen Z L,  Xu X P,  Ji S J.  ChemInform Abstract:  Broensted  base   [27]  Elhamifar D, Elhamifar D, Shojaeipoor F. Synthesis, characterization
                 catalyzed  one-pot  three-component  Biginelli-type  reaction:  an   and catalytic application of a novel polyethylene-supported Fe/ionic
                 efficient synthesis of 4, 5, 6-triaryl-3, 4-dihydropyrimidin-2(1H)-one   liquid complex[J]. Journal of Molecular Catalysis A: Chemical, 2017,
                 and mechanistic study[J]. Cheminform, 2010, 41(24): 1162-1167.     426: 198-204.
            [7]   Bose D S, Fatima L, Mereyala H B. Green chemistry approaches to   [28]  Nazari  S,  Saadat  S,  Fard  P  K,  et al.  Imidazole  functionalized
                 the  synthesis  of  5-alkoxycarbonyl-4-aryl-3,  4-dihydropyrimidin-   magnetic Fe 3O 4 nanoparticles as a novel heterogeneous and efficient
                 2(1H)-ones by a three-component coupling of one-pot condensation   catalyst  for  synthesis  of  dihydropyrimidinones  by  Biginelli
                 reaction: comparison of ethanol, water, and solvent-free conditions[J].   reaction[J]. Monatshefte Fur Chemie, 2013, 144(12): 1877-1882.
                 Journal of Organic Chemistry, 2003, 68(2): 587-590.     [29]  Wang  J  H,  Zhang  E,  Tang  G  M,  et al.  Novel  bipyridinyl
            [8]   Slimi  H,  Moussaoui  Y,  Salem  R  B.  Synthesis  of  3,   oxadiazole-based  metal  coordination  complexes:  high  efficient  and
                 4-dihydropyrimidin-2(1H)-ones/thiones   via   Biginelli   reaction   green  synthesis  of  3,  4-dihydropyrimidin-2(1H)-ones  through  the
                 promoted by bismuth(Ⅲ)nitrate or PPh 3 without solvent[J]. Arabian   Biginelli  reactions[J].  Journal  of  Solid  State  Chemistry,  2016, 261:
                 Journal of Chemistry, 2016, 9: S510-S514.         86-98.
            [9]   Lal J, Sharma M, Sahu P K, et al. Multi-component one-pot synthesis   [30]  Zare  A, Nasouri  Z. A green approach for the synthesis of  3,
                 of  4-aryl  substituted  dihydropyrimidinones  and  mechanistic  study   4-dihydropyrimidin-2-(1H)-ones  (and-thiones)  using  N,  N-diethyl-
                 under solvent-free conditions using NiO 2 as heterogeneous recyclable   N-sulfoethanaminium  hydrogen  sulfate[J].  Journal  of  Molecular
                 green catalyst[J]. Proceedings of the National Academy of Sciences   Liquids, 2016, 216: 364-369.
                 India, 2013, 83(3): 187-193.                  [31]  Rashmi S V, Sandhya N C, Raghava B, et al. Trifluoroethanol as a
            [10]  Karimi-Jaberi Z, Moaddeli M S. Synthesis of 3, 4-dihydropyrimidin-   metal-free,  homogeneous,  and  recyclable  medium  for  the  efficient
                 2(1H)-ones   and   their   corresponding   2(1H)thiones   using   one-pot  synthesis  of  dihydropyrimidones[J].  Cheminform,  2012,
                 trichloroacetic acid as a catalyst under solvent-free conditions[J]. Isrn   42(3): 424-433.
                 Organic Chemistry, 2012, 2012(1/2): 1-4.      [32]  Maleki  A,  Paydar  R.  Bionanostructure-catalyzed  one-pot  three-
            [11]  Moussa  S  B,  Lachheb  J,  Gruselle  M,  et al.  Calcium,  Barium  and   component synthesis of 3, 4-dihydropyrimidin-2(1H)-one derivatives
                 Strontium  apatites:  A  new  generation  of  catalysts  in  the  Biginelli   under solvent-free conditions[J]. Reactive and Functional Polymers,
                 reaction[J]. Tetrahedron, 2017, 73(46): 6542-6547.     2016, 109: 120-124.
            [12]  Nagarajaiah H, Mukhopadhyay A, Moorthy J N. Biginelli reaction:   [33]  Liu  Z  Q,  Ma  R,  Cao  D  W.  New  efficient  synthesis  of  3,
                 An overview[J]. Tetrahedron Letters, 2016, 57(47): 5135-5149.     4-dihydropyrimidin-2(1H)-ones  catalyzed  by  benzotriazolium-based
            [13]  Zheng S, Jian Y, Xu S, et al. N-Donor ligand activation of titanocene   ionic  liquids  under  solvent-free  conditions[J].  Molecules,  2016,
                 for the Biginelli reaction via the imine mechanism[J].RSC Advances,   21(4): 462.
                 2018, 8(16): 8657-8661.                       [34]  Damgaard M, Al-Khawaja A, Nittegaard-Nielsen, et al. Monastrol, a
            [14]  Alvim H G O, Lima T B D, Oliveira H C B D, et al. Ionic liquid   3,  4-dihydropyrimidin-2(1H)-thione,  as  structural  scaffold  for  the
                 effect  over  the  Biginelli  reaction  under  homogeneous  and   development of modulators for GHB high-affinity binding sites and
                 heterogeneous catalysis[J]. ACS Catalysis, 2013, 3(3): 1420-1430.     α 1β 2δ  GABA A  receptors[J].  European  Journal  of  Medicinal
            [15]  Lei  M,  Ma  L,  Hu  L.  An  efficient  and  environmentally  friendly   Chemistry, 2017, 138: 300-312.
                 procedure  for  synthesis  of  pyrimidinone  derivatives  by  use  of  a   [35]  Liu Y, Liu R. The interaction of α-chymotrypsin with one persistent
                 Biginelli-type  reaction[J].  Monatshefte  fur  Chemie,  2010,  141(9):   organic  pollutant  (dicofol):  Spectroscope  and  molecular  modeling
                 1005-1008.                                        identification[J].  Food  &  Chemical  Toxicology,  2012,  50(9):  3298-
            [16]  Borse  B  N,  Borude  V  S,  Shukla  S  R.  Synthesis  of  novel   3305.
                 dihydropyrimidin-2(1H)-ones  derivatives  using  lipase  and  their   [36]  Kumar A, Venkatesu P. Overview of the stability of α-chymotrypsin
                 antimicrobial activity[J]. Current Chemistry Letters, 2012, 1: 59-68.     in different solvent media[J]. Chemical Reviews, 2012, 112(7): 4283-
            [17]  Sharma  U  K,  Sharma  N,  Kumar  R,  et al.  Biocatalysts  for   4307.
   77   78   79   80   81   82   83   84   85   86   87