Page 19 - 精细化工2019年第9期
P. 19

第 9 期                       邢   杨,等:  利用荧光探针检测有机农药的研究进展                                 ·1747·


            [31]  Singha  D  K,  Majee  P,  Mandal  S,  et al.  Detection  of  pesticides  in   [50]  Wang  S,  Li  L,  Zhang  J,  et al.  Anion-tuned  sorption  and  catalytic
                 aqueous  medium  and  in  fruit  extracts  using  a  three-dimensional   properties  of  a  soft  metal-organic  solid  with  polycatenated
                 metal-organic framework: experimental and computational study[J].   frameworks[J].  Journal  of  Materials  Chemistry,  2011,  21(20):
                 Inorganic Chemistry, 2018, 57(19): 12155-12165.     7098-7104.
            [32]  Zhang B, Yan J, Shang Y, et al. Synthesis of fluorescent micro- and   [51]  Chen B, Xiang S, Qian G. Metal-organic frameworks with functional
                 mesoporous  polyaminals  for  detection  of  toxic  pesticides[J].   pores  for  recognition  of  small  molecules[J].  Accounts  of  Chemical
                 Macromolecules, 2018, 51(5): 1769-1776.           Research, 2010, 43(8): 1115-1124.
            [33]  Harvey S D. Molecularly imprinted polymers for selective analysis   [52]  Li  S  L,  Xu  Q.  Metal-organic  frameworks  as  platforms  for  clean
                 of  chemical  warfare  surrogate  and  nuclear  signature  compounds  in   energy[J]. Energy & Environmental Science, 2013, 6(6): 1656-1683.
                 complex  matrices[J].  Journal  of  Separation  Science,  2005,  28(11):   [53]  Liang  X,  Zhang  F,  Feng  W, et al.  From  metal-organic  framework
                 1221-1230.                                        (MOF)  to  MOF-polymer  composite  membrane:  enhancement  of
            [34]  Southard  G  E,  Van  Houten  K  A,  Murray  G  M.  Soluble  and   low-humidity proton conductivity[J]. Chemical Science, 2013, 4(3):
                 processable  phosphonate  sensing  star  molecularly  imprinted   983-992.
                 polymers[J]. Macromolecules, 2007, 40 (5): 1395-1400.     [54]  Wu B, Lin X, Ge L, et al. A novel route for preparing highly proton
            [35]  Southard G E, Van Houten K A, Ott E W, et al. Luminescent sensing   conductive  membrane  materials  with  metal-organic  frameworks[J].
                 of  organophosphates  using  europium( Ⅲ )  containing  imprinted   Chemical Communications, 2013, 49(2): 143-145.
                 polymers  prepared  by  RAFT  polymerization[J].  Analytica  Chimica   [55]  Zhang  Q,  Li  B,  Chen  L.  First-principles  study  of  microporous
                 Acta, 2007, 581(2): 202-207.                      magnets M-MOF-74  (M = Ni, Co,  Fe, Mn):  the  role of  metal
            [36]  Kanagaraj  K,  Affrose  A,  Sivakolunthu  S,  et al.  Highly  selective   centers[J]. Inorganic Chemistry, 2013, 52(16): 9356-9362.
                 fluorescent sensing of fenitrothion using per-6-amino--cyclodextrin:   [56]  Wang L S, Sheng T L, Wang X, et al. Self-assembly of luminescent
                 Eu(Ⅲ)  complex[J].  Biosensors  and  Bioelectronics,  2012,  35(1):   Sn(Ⅳ)/Cu/S  clusters  using  metal  thiolates  as  metalloligands[J].
                 452-455.                                          Inorganic Chemistry, 2008, 47(10): 4054-4059.
            [37]  Zeng X, Ma J, Luo L, et al. Pesticide macroscopic recognition by a   [57]  Xian S, Yu Y, Xiao J, et al. Competitive adsorption of water vapor
                 naphthol-appended  calix[4]arene[J].  Organic  Letters,  2015,  17(12):   with  VOCs  dichloroethane,  ethyl  acetate  and  benzene  on  MIL-101
                 2976-2979.                                        (Cr) in humid atmosphere[J]. RSC Advances, 2015, 5(3): 1827-1834.
            [38]  Shrot S, Markel G, Dushnitsky T, et al. The possible use of oximes as   [58]  Allendorf  M  D,  Bauer  C  A,  Bhakta  R  K,  et al.  Luminescent
                 antidotal  therapy  in  organophosphate-induced  brain  damage[J].   metal-organic  frameworks[J].  Chemical  Society  Reviews,  2009,
                 Neurotoxicology, 2009, 30(2): 167-173.            38(5): 1330-1352.
            [39]  Walton I, Davis M, Munro L, et al. A fluorescent dipyrrinone oxime   [59]  Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic
                 for  the  detection  of  pesticides  and  other  organophosphates[J].   frameworks[J]. Chemical Reviews, 2012, 112(2): 1126-1162.
                 Organic Letters, 2012, 14(11): 2686-2689.     [60]  Kreno  L  E,  Leong  K,  Farha  O  K,  et al.  Metal-organic  framework
            [40]  Barba-bon  A,  Costero  A  M,  Gil  S,  et al.  Chromo-fluorogenic   materials  as  chemical  sensors[J].  Chemical  Reviews,  2012,  112(2):
                 BODIPY-complexes  for  selective  detection  of  V-type  nerve  agent   1105-1125.
                 surrogates[J].  Chemical  Communications,  2014,  50(87):  13289-   [61]  Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for
                 13291.                                            chemical  sensing  and  explosive  detection[J].  Chemical  Society
            [41]  Zhang  K,  Mei  Q,  Guan  G,  et al.  Ligand  replacement-induced   Reviews, 2014, 43(16): 5815-5840.
                 fluorescence  switch  of  quantum  dots  for  ultrasensitive  detection  of   [62]  Pi Y, Li X, Xia Q, et al. Adsorptive and photocatalytic removal of
                 organophosphorothioate  pesticides[J].  Analytical  Chemistry,  2010,   persistent  organic  pollutants  (POPs)  in  water  by  metal-organic
                 82(22): 9579-9586.                                frameworks  (MOFs)[J].  Chemical  Engineering  Journal,  2018,  337:
            [42]  Zhang  K,  Yu  T,  Liu  F,  et al.  Selective  fluorescence  turn-on  and   351-371.
                 ratiometric  detection  of  organophosphate  using  dual-emitting   [63]  Xu X, Guo Y, Wang X, et al. Sensitive detection of pesticides by a
                 mn-doped  zns  nanocrystal  probe[J].  Analytical  Chemistry,  2014,   highly luminescent metal-organic framework[J]. Sensors and Actuators
                 86(23): 11727-11733.                              B: Chemical, 2018, 260: 339-345.
            [43]  Hoskins B F, Robson R. Infinite polymeric frameworks consisting of   [64]  Xu  N,  Zhang  Q,  Hou  B,  et al.  A  novel  magnesium  metal-organic
                 three  dimensionally  linked  rod-like  segments[J].  Journal  of  the   framework as a multiresponsive luminescent sensor for Fe(Ⅲ) ions,
                 American Chemical Society, 1989, 111(15): 5962-5964.     pesticides,  and  antibiotics  with  high  selectivity  and  sensitivity[J].
            [44]  Li  H,  Eddaoudi  M,  O'keeffe  M,  et al.  Design  and  synthesis  of  an   Inorganic Chemistry, 2018, 57(21): 13330-13340.
                 exceptionally stable and highly porous metal-organic framework[J].   [65]  Kumar P, Paul A K, Deep A. A luminescent nanocrystal metal organic
                 Nature, 1999, 402(6759): 276-279.                 framework for chemosensing of nitro group containing organophosphate
            [45]  Li B, Wen H M, Wang H, et al. A porous metal-organic framework   pesticides[J]. Analytical Methods, 2014, 6(12): 4095-4101.
                 with  dynamic  pyrimidine  groups  exhibiting  record  high  methane   [66]  Bunzli J C G, Piguet C. Taking advantage of luminescent lanthanide
                 storage  working  capacity[J].  Journal  of  the  American  Chemical   ions[J]. Chemical Society Reviews, 2005, 34(12): 1048-1077.
                 Society, 2014, 136(17): 6207-6210.            [67]  Zhao B, Chen X Y, Cheng P, et al. Coordination polymers containing
            [46]  Ma F J, Liu S X, Sun C Y, et al. A sodalite-type porous metal-organic   1D  channels  as  selective  luminescent  probes[J].  Journal  of  the
                 framework   with   polyoxometalate   templates:Adsorption   and   American Chemical Society, 2004, 126(47): 15394-15395.
                 decomposition  of  dimethyl  methylphosphonate[J].  Journal  of  the   [68]  Knapton  D,  Burnworth  M,  Rowan  S  J,  et al.  Fluorescent
                 American Chemical Society, 2011, 133(12): 4178-4181.     organometallic  sensors  for  the  detection  of  chemical-warfare-agent
            [47]  Liu J,  Chen L,  Cui  H,  et al.  Applications  of  metal-organic   mimics[J]. Angewandte Chemie International Edition, 2006, 45(35):
                 frameworks in heterogeneous supramolecular catalysis[J]. Chemical   5825-5829.
                 Society Reviews, 2014, 43(16): 6011-6061.     [69]  Shunmugam R, Tew G N. Terpyridine-lanthanide complexes respond
            [48]  Shi  L  X,  Wu  C  D.  A  nanoporous  metal-organic  framework  with   to  fluorophosphate  containing  nerve  gas  g-agent  surrogates[J].
                         2+
                 accessible  Cu   sites  for  the  catalytic  Henry  reaction[J].  Chemical   Chemistry-A European Journal, 2008, 14(18): 5409-5412.
                 Communications, 2011, 47(10): 2928-2930.      [70]  Di  L,  Zhang  J  J,  Liu  S  Q,  et al.  Two  dynamic  ABW-type  metal
                                                                                                         2+
            [49]  Chen  J,  Liu  R,  Gao  H,  et al.  Amine-functionalized  metal-organic   organic  frameworks  built  of  pentacarboxylate  and  Zn  as
                 frameworks for the transesterification of triglycerides[J]. Journal of   photoluminescent  probes  of  nitroaromatics[J].  Crystal  Growth  &
                 Materials Chemistry A, 2014, 2(20): 7205-7213.     Design, 2016, 16(8): 4539-4546.
   14   15   16   17   18   19   20   21   22   23   24