Page 19 - 精细化工2019年第9期
P. 19
第 9 期 邢 杨,等: 利用荧光探针检测有机农药的研究进展 ·1747·
[31] Singha D K, Majee P, Mandal S, et al. Detection of pesticides in [50] Wang S, Li L, Zhang J, et al. Anion-tuned sorption and catalytic
aqueous medium and in fruit extracts using a three-dimensional properties of a soft metal-organic solid with polycatenated
metal-organic framework: experimental and computational study[J]. frameworks[J]. Journal of Materials Chemistry, 2011, 21(20):
Inorganic Chemistry, 2018, 57(19): 12155-12165. 7098-7104.
[32] Zhang B, Yan J, Shang Y, et al. Synthesis of fluorescent micro- and [51] Chen B, Xiang S, Qian G. Metal-organic frameworks with functional
mesoporous polyaminals for detection of toxic pesticides[J]. pores for recognition of small molecules[J]. Accounts of Chemical
Macromolecules, 2018, 51(5): 1769-1776. Research, 2010, 43(8): 1115-1124.
[33] Harvey S D. Molecularly imprinted polymers for selective analysis [52] Li S L, Xu Q. Metal-organic frameworks as platforms for clean
of chemical warfare surrogate and nuclear signature compounds in energy[J]. Energy & Environmental Science, 2013, 6(6): 1656-1683.
complex matrices[J]. Journal of Separation Science, 2005, 28(11): [53] Liang X, Zhang F, Feng W, et al. From metal-organic framework
1221-1230. (MOF) to MOF-polymer composite membrane: enhancement of
[34] Southard G E, Van Houten K A, Murray G M. Soluble and low-humidity proton conductivity[J]. Chemical Science, 2013, 4(3):
processable phosphonate sensing star molecularly imprinted 983-992.
polymers[J]. Macromolecules, 2007, 40 (5): 1395-1400. [54] Wu B, Lin X, Ge L, et al. A novel route for preparing highly proton
[35] Southard G E, Van Houten K A, Ott E W, et al. Luminescent sensing conductive membrane materials with metal-organic frameworks[J].
of organophosphates using europium( Ⅲ ) containing imprinted Chemical Communications, 2013, 49(2): 143-145.
polymers prepared by RAFT polymerization[J]. Analytica Chimica [55] Zhang Q, Li B, Chen L. First-principles study of microporous
Acta, 2007, 581(2): 202-207. magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the role of metal
[36] Kanagaraj K, Affrose A, Sivakolunthu S, et al. Highly selective centers[J]. Inorganic Chemistry, 2013, 52(16): 9356-9362.
fluorescent sensing of fenitrothion using per-6-amino--cyclodextrin: [56] Wang L S, Sheng T L, Wang X, et al. Self-assembly of luminescent
Eu(Ⅲ) complex[J]. Biosensors and Bioelectronics, 2012, 35(1): Sn(Ⅳ)/Cu/S clusters using metal thiolates as metalloligands[J].
452-455. Inorganic Chemistry, 2008, 47(10): 4054-4059.
[37] Zeng X, Ma J, Luo L, et al. Pesticide macroscopic recognition by a [57] Xian S, Yu Y, Xiao J, et al. Competitive adsorption of water vapor
naphthol-appended calix[4]arene[J]. Organic Letters, 2015, 17(12): with VOCs dichloroethane, ethyl acetate and benzene on MIL-101
2976-2979. (Cr) in humid atmosphere[J]. RSC Advances, 2015, 5(3): 1827-1834.
[38] Shrot S, Markel G, Dushnitsky T, et al. The possible use of oximes as [58] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent
antidotal therapy in organophosphate-induced brain damage[J]. metal-organic frameworks[J]. Chemical Society Reviews, 2009,
Neurotoxicology, 2009, 30(2): 167-173. 38(5): 1330-1352.
[39] Walton I, Davis M, Munro L, et al. A fluorescent dipyrrinone oxime [59] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic
for the detection of pesticides and other organophosphates[J]. frameworks[J]. Chemical Reviews, 2012, 112(2): 1126-1162.
Organic Letters, 2012, 14(11): 2686-2689. [60] Kreno L E, Leong K, Farha O K, et al. Metal-organic framework
[40] Barba-bon A, Costero A M, Gil S, et al. Chromo-fluorogenic materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2):
BODIPY-complexes for selective detection of V-type nerve agent 1105-1125.
surrogates[J]. Chemical Communications, 2014, 50(87): 13289- [61] Hu Z, Deibert B J, Li J. Luminescent metal-organic frameworks for
13291. chemical sensing and explosive detection[J]. Chemical Society
[41] Zhang K, Mei Q, Guan G, et al. Ligand replacement-induced Reviews, 2014, 43(16): 5815-5840.
fluorescence switch of quantum dots for ultrasensitive detection of [62] Pi Y, Li X, Xia Q, et al. Adsorptive and photocatalytic removal of
organophosphorothioate pesticides[J]. Analytical Chemistry, 2010, persistent organic pollutants (POPs) in water by metal-organic
82(22): 9579-9586. frameworks (MOFs)[J]. Chemical Engineering Journal, 2018, 337:
[42] Zhang K, Yu T, Liu F, et al. Selective fluorescence turn-on and 351-371.
ratiometric detection of organophosphate using dual-emitting [63] Xu X, Guo Y, Wang X, et al. Sensitive detection of pesticides by a
mn-doped zns nanocrystal probe[J]. Analytical Chemistry, 2014, highly luminescent metal-organic framework[J]. Sensors and Actuators
86(23): 11727-11733. B: Chemical, 2018, 260: 339-345.
[43] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of [64] Xu N, Zhang Q, Hou B, et al. A novel magnesium metal-organic
three dimensionally linked rod-like segments[J]. Journal of the framework as a multiresponsive luminescent sensor for Fe(Ⅲ) ions,
American Chemical Society, 1989, 111(15): 5962-5964. pesticides, and antibiotics with high selectivity and sensitivity[J].
[44] Li H, Eddaoudi M, O'keeffe M, et al. Design and synthesis of an Inorganic Chemistry, 2018, 57(21): 13330-13340.
exceptionally stable and highly porous metal-organic framework[J]. [65] Kumar P, Paul A K, Deep A. A luminescent nanocrystal metal organic
Nature, 1999, 402(6759): 276-279. framework for chemosensing of nitro group containing organophosphate
[45] Li B, Wen H M, Wang H, et al. A porous metal-organic framework pesticides[J]. Analytical Methods, 2014, 6(12): 4095-4101.
with dynamic pyrimidine groups exhibiting record high methane [66] Bunzli J C G, Piguet C. Taking advantage of luminescent lanthanide
storage working capacity[J]. Journal of the American Chemical ions[J]. Chemical Society Reviews, 2005, 34(12): 1048-1077.
Society, 2014, 136(17): 6207-6210. [67] Zhao B, Chen X Y, Cheng P, et al. Coordination polymers containing
[46] Ma F J, Liu S X, Sun C Y, et al. A sodalite-type porous metal-organic 1D channels as selective luminescent probes[J]. Journal of the
framework with polyoxometalate templates:Adsorption and American Chemical Society, 2004, 126(47): 15394-15395.
decomposition of dimethyl methylphosphonate[J]. Journal of the [68] Knapton D, Burnworth M, Rowan S J, et al. Fluorescent
American Chemical Society, 2011, 133(12): 4178-4181. organometallic sensors for the detection of chemical-warfare-agent
[47] Liu J, Chen L, Cui H, et al. Applications of metal-organic mimics[J]. Angewandte Chemie International Edition, 2006, 45(35):
frameworks in heterogeneous supramolecular catalysis[J]. Chemical 5825-5829.
Society Reviews, 2014, 43(16): 6011-6061. [69] Shunmugam R, Tew G N. Terpyridine-lanthanide complexes respond
[48] Shi L X, Wu C D. A nanoporous metal-organic framework with to fluorophosphate containing nerve gas g-agent surrogates[J].
2+
accessible Cu sites for the catalytic Henry reaction[J]. Chemical Chemistry-A European Journal, 2008, 14(18): 5409-5412.
Communications, 2011, 47(10): 2928-2930. [70] Di L, Zhang J J, Liu S Q, et al. Two dynamic ABW-type metal
2+
[49] Chen J, Liu R, Gao H, et al. Amine-functionalized metal-organic organic frameworks built of pentacarboxylate and Zn as
frameworks for the transesterification of triglycerides[J]. Journal of photoluminescent probes of nitroaromatics[J]. Crystal Growth &
Materials Chemistry A, 2014, 2(20): 7205-7213. Design, 2016, 16(8): 4539-4546.