Page 225 - 《精细化工》2020年第1期
P. 225

第 1 期                      冯柏成,等:  深共熔溶剂中 β-二羰基化合物的 α-酰基化                                ·211·


            其成为一种绿色化体系,这是其最大的优势。本文                                 metathesis,  alkylation  and  coupling  reactions[J].  Bioscience
                                                                   Biotechnology and Biochemistry, 2010, 74(3): 595-600.
            对其重复使用性作了探究,在最佳反应条件下,以                             [9]   Fariba Keshavarzipour, Hossein Tavakol. The synthesis of coumarin
            对甲砜基苯甲酰氯和丙二酸二甲酯作为反应模板,                                 derivatives  using  choline  chloride/zinc  chloride  as  a  deep  eutectic
                                                                   solvent[J]. Journal of the Iranian Chemical Society, 2016, 13: 149-153.
            考察了 ChCl/2ZnCl 2 的重复使用性能,每次使用前,                    [10]  Lu Chao (鲁超), Su Erzheng (苏二正), Wei Dongzhi (魏东芝). The
            未对 DES 作进一步纯化处理,结果见表 6。                                applications  of  deep  eutectic  solvents  in  biocatalysis[J].  Journal  of
                                                                   Molecular Catalysis (分子催化), 2015, 29(4): 390-401.
                                                               [11]  Yan Nan (严楠), Xiong Yunkui (熊云奎), Xia Jianhui (夏剑辉), et al.
                   表 6  DES 的重复使用次数对产率的影响                          Green  synthesis  novel  spirooxindole  derivatives  in  deep  eutectic
            Table 6    Effects of repeated utilization times of DES on the   solvent[J]. Chinese Journal of Organic Chemistry (有机化学), 2015,
                    yield of product                               35: 384-389.
                                                               [12]  Lu Yue (卢粤), Liang Meng (梁萌), Jiang Guofang (姜国芳), et al.
                   Run           Time/h         Yield/%            Synthesis of quinoline derivatives by deep eutectic solvent method[J].
                  Fresh            4              94               Fine Chemicals (精细化工), 2018, 35(8): 1427-1431.
                    1              4              93           [13]  Tang Liping (唐利平), Zhao Shilin (赵仕林), Luo Feng (罗峰), et al.
                                                                   Green  synthesis  of  β-indole  derivatives  in  deep  eutectic  solvent[J].
                    2              4              91               Fine Chemicals (精细化工), 2015, 32(6): 704-708.
                    3              4              89           [14]  Abbott A P, Boothby D, Capper G, et al. Deep eutectic solvents formed
                    4              4              86               between choline chloride and carboxylic acids: versatile alternatives to
                                                                   ionic  liquids[J].  Journal  of  the  American  Chemical  Society,  2004,
                 从表 6 可以看出,DES 重复使用 4 次以后,产                        126(29): 9142-9147.
                                                               [15]  Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature
            率虽有 8%的损失,但仍可以达到 86%以上。因此,                             ionic  liquids  as  novel  media  for  "clean"  liquid-liquid  extraction[J].
                                                                   Chemical Communications, 1998, (16): 1765-1766.
            该 DES 在此类反应中,至少可以重复使用 4 次而无                        [16]  Abbott  A  P,  Barrob  J  C,  Ryder  K  S,  et al.  Eutectic-based  ionic
            显著的活性损失。                                               liquids with metal-containing anions and cations[J]. Chemistry, 2007,
                                                                   13(22): 6495-6501.
                                                               [17]  Hou Liangpei (侯良培), Zhao Rongxiang (赵荣祥), Li Xiuping (李
            3   结论                                                 秀萍).  Highly  efficient  catalytic  oxidation  desulfurization  from
                                                                   model oil based on acid deep eutectic solvents tetraethylammonium
                                                                   chloride/trifluoroacetic  acid[J].  CIESC  Journal  (化工学报),  2017,
                 本文介绍了用 DES 作为溶剂和催化剂进行 β-
                                                                   68(4): 1614-1621
            二羰基化合物 α-酰基化的一种合成手段,并通过对                           [18]  Feng  Yadong  (冯亚栋),  Zhang  Hong  (张红), Cheng Guolin (程国
                                                                   林),  et al.  Synthesis  of  indole  derivatives  via  domino  reactions[J].
            反应温度、反应时间、催化剂种类和用量的探究,                                 Chinese  Journal  of  Organic  Chemistry  (有机化学),  2014,  34(8):
            确定了最佳的反应条件(在 6  mmol  ChCl/2ZnCl 2                     1499-1508.
                                                               [19]  Li Jitai (李纪太), Dai Hongguang (代红光), Lin Zhiping (蔺志平).
            DES 中,加入苯酰氯衍生物 50  mmol,β-二羰基化                         Synthesis of 3-substituted indole derivatives[J]. Progress in Chemistry
            合物 60 mmol,于 120  ℃搅拌反应 4 h),并扩展了                      (化学进展), 2007, 19(5): 751-761.
                                                               [20]  Phadtare S B, Jarag K J, Shankarling G S. Greener protocol for one
            9 种底物。实验证实,DES 体系可以循环使用 4 次                            pot synthesis of coumarin styryl dyes[J]. Dyes and Pigments, 2013,
            而不会显著降低产物收率。本法能有效合成目标产                                 97(1): 105-112.
                                                               [21]  Najmedin  Azizi,  Sahar  Dezfooli,  Mohammad  Mahmoudi  Hashemi.
            物,属于环境友好体系,能避免使用有毒溶剂。                                  Greener  synthesis  of  spirooxindole  in  deep  eutectic  solvent[J].
                                                                   Journal of Molecular Liquids, 2014, 194: 62-67.
            参考文献:                                              [22]  Pant P L, Shankarling G S. Deep eutectic solvent: An efficient catalyst
                                                                   for C—O coupling reactions[J]. Chemistry Select, 2017, 2(17): 4892-
            [1]   Jung Jae-Chul, Park Oee-Sook. Simple synthesis of eudesmin through   4898.
                 oxidative coupling of carbanions and reductive catalytic hydrogenation   [23]  Pan  Ying,  Md  Asraful  Alam,  Wang  Zhongming,  et al.  Enhanced
                 of diketo diester[J]. Synthetic Communications, 2007, 37(10): 1665-   esterification  of  oleic  acid  and  methanol  by  deep  eutectic  solvent
                 1673.                                             assisted amberlyst heterogeneous catalyst[J]. Bioresource Technology,
            [2]   Jiang  Wenhao,  Zhao  Qing,  Tang  Wenjun.  Efficient  p-chiral  biaryl   2016, 220: 543-548.
                 bisphosphorus   ligands   for   palladium-catalyzed   asymmetric   [24]  Cao  Jin,  Qi  Bin,  Liu  Jun,  et al.  Deep  eutectic  solvent  choline
                 hydrogenation[J]. Chinese Journal of Chemistry, 2018, (2): 153-156.   chloride·2CrCl 3·6H 2O:  an  efficient  catalyst  for  esterification  of
            [3]   Jiang  Yan,  Chen  Xing,  Hu  Xiaoyan,  et al.  ChemInform  abstract:   formic and acetic acid at room temperature[J]. RSC Advances, 2016,
                 stereoselective  Lewis  base-catalyzed  asymmetric  hydrosilylation of   6(26): 21612-21616.
                 α-acetamido-β-enamino  esters:  Straightforward  approach  for  the   [25]  Wang Xinlong, Xu Lingjun, Yan Lingjie, et al. Catalytic asymmetric
                 construction of α, β-diamino acid derivatives[J]. Advanced Synthesis   transfer  hydrogenation/dynamic  kinetic  resolution:  An  efficient
                 & Catalysis, 2013, 355(10): 1931-1936.            synthesis of florfenicol[J]. Tetrahedron, 2016, 72(14): 1787-1793.
            [4]   He  Yang,  Xu  Qien,  Ma  Wenpeng,  et al.  Expeditious  synthesis  of   [26]  Shen Quansheng, Huang Wen, Wang Jialiang, et al. SmCl 3-catalyzed
                 Ivacaftor[J]. Heterocyclcles, 2014, 89(4): 1035-1040.   C-acylation of 1,3-dicarbonyl compounds and malononitrile[J]. Organic
            [5]   F Jiménez-Cruz, Maldonado L A, Cetina R, et al. Synthesis of 1-aryl-   Letters, 2007, 9(22): 4491-4494.
                 1,3-diketones  containing  the  dimethyl  malonate  moiety[J].  Synthetic   [27]  Pozdnyakov V V, Moiseev I K. Specific features of dimethyl malonate
                 Communications, 2000, 30(18): 3439-3450.          acylation  by  1-adamantylacetyl  chloride  in  the  presence  of  solid
            [6]   Jung  J  C,  Watkins  E  B,  Avery  M  A.  Efficient  synthesis  of   NaOH[J]. Cheminform, 2003, 34(46): 273-274.
                 4-ethoxycarbonyl   pyrazolin-5-one   derivatives[J].   Synthetic   [28]  Keshavarzipour F, Tavakol H. Deep eutectic solvent as a recyclable
                 Communications, 2002, 32(24): 3767-3777.          catalyst  for  three-component  synthesis  of  β-amino  carbonyls[J].
            [7]   Lorente A, Vaquerizo L, Martín A, et al. Regioselective synthesis of   Catalysis Letters, 2015, 145(4): 1062-1066.
                 pyrimidines  from  ketene  dithioacetals  or  alkoxymethylene   [29]  Yadav  U  N,  Shankarling  G  S.  Synergistic  effect  of  ultrasound  and
                 compounds[J]. Heterocycles, 1995, 41(1): 71-86.   deep  eutectic  solvent  choline  chloride-urea  as  versatile  catalyst  for
            [8]   Mori  K.  New  syntheses  of  1,  7-dimethylnonyl  propanoate,  the   rapid synthesis of β-functionalized ketonic derivatives[J]. Journal of
                 western corn rootworm pheromone, in four different ways via cross   Molecular Liquids, 2014, 195: 188-193.
   220   221   222   223   224   225   226   227   228   229   230