Page 168 - 《精细化工》2020年 第10期
P. 168
·2098· 精细化工 FINE CHEMICALS 第 37 卷
参考文献: volume[J]. Materials Review B: Research Part (材料导报 B: 研究
篇), 2011, 25(12): 20-23.
[1] HUANG Y G, LIN X L, PAN Q C, et al. Al@C/Expanded graphite [22] JIAN Z M, LIU H B, KUANG J C, et al. Natural flake graphite
composite as anode material for lithium ion batteries[J]. Electrochimica modified by mild oxidation and carbon coating treatment as anode
Acta, 2016, 193: 253-260. material for lithium ion batteries[J]. Procedia Engineering, 2012, 27:
[2] CHEN Z X, QIAN J F, AI X P, et al. Electrochemical performances 55-62.
of Al-based composites as anode materials for Li-ion batteries[J]. [23] LIN Y X, HUANG Z H, YU X L, et al. Mildly expanded graphite for
Electrochimica Acta, 2009, 54: 4118-4122. anode materials of lithium ion battery synthesized with perchloric
[3] CHANG X H, XIE Z W, LIU Z L, et al. Aluminum: An acid[J]. Electrochimica Acta, 2014, 116: 170-174.
underappreciated anode material for lithium-ion batteries[J]. Energy [24] LEE D J, RYOU M H, LEE J N, et al. Nitrogen-doped carbon
Storage Materials, 2020, 25: 93-99. coating for a high-performance SiO anode in lithium-ion
[4] OBROVAC M N, CHRISTENSEN L. Structural changes in silicon batteries[J].Electrochemistry Communications, 2013, 34: 98-101.
anodes during lithium insertionlextraction[J]. Electrochemical and [25] WANG R, WANG J, CHEN S, et al. Toward mechanically stable
Solid-State Letters, 2004, 7(5): A93-A96. silicon-based anodes using Si/SiO x@C hierarchical structures with
[5] PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials well-controlled internal buffer voids[J]. ACS Applied Materials &
for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39: Interfaces, 2018, 10: 41422-41430.
3115-3141. [26] HWA Y, PARK C M, SOHN H J. Modified SiO as a high
[6] FENG X J (冯雪娇), CUI H M (崔红敏), XIAO Z Q (肖正强),et al. performance anode for Li-ion batteries[J]. Journal of Power Sources,
Synthesis of porous silicon oxide/silicon/carbon composite material 2013, 222(2): 129-134.
from micro-SiO for lithium storage[J]. Chinese Journal of Applied [27] SI Q, HANAI K, ICHIKAWA T, et al. Improvement of cyclic
Chemistry (应用化学),2017, 34(1): 76-82. behavior of a ball-milled SiO and carbon nanofiber composite anode
[7] WANG B R, JIN J, WEN Z Y. In situ synthesis of core-shell for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(22):
structured Ge@NC hybrids as high performance anode material for 9774-9779.
lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 360: [28] HYUNJUNG K, BYUNGHEE H, JAEBUM C, et al. Three-
1301-1309. dimensional porous silicon particles for use in high-performance
[8] GUO W, MEI L, FENG Q Q, et al. Facile synthesis of Ge/C lithium secondary batteries[J]. Angewandte Chemie International
nanocomposite as superior battery anode material[J]. Materials Edition, 2008, 47(52): 10151-10154.
Chemistry and Physics, 2015, 168: 6-9. [29] CHEN W, FAN Z, DHANABALAN A, et al. Mesoporous silicon
[9] ZHAO M, ZHAO D L, HAN X Y, et al. Ge nanoparticles embedded anodes prepared by magnesiothenwic reduction for lithium ion
in spherical ordered mesoporous carbon as anode material for high batteries[J]. Journal of the Electrochemical Society, 2011, 158(9):
performance lithium ion batteries[J]. Electrochimica Acta, 2018, 287: A1055-A1059.
21-28. [30] XING A, ZHANG J, BAO Z H, et al. A magnesiothermic reaction
[10] SONG F, YANG X L, ZHANG S Z, et al. High-performance process for the sealable production of mesoporous silicon for
phosphorus-modified SiO/C anode material for lithium ion batteries[J]. rechargeable lithium batteries[J]. Chemical Communications, 2013,
Ceramics International, 2018, 44: 18509-18515. 49(60): 6743-6745.
[11] HIDEYUKI Y, KUNIHIRO N, SHINJI N, et al. Investigation of the [31] WU W, WANG M, WANG R, et al. Magnesio-mechanochemical
irreversible reaction mechanism and the reactive trigger on SiO reduced SiO x for high-performance lithium ion batteries[J]. Journal
anode material for lithium-ion battery[J]. Journal of the Ceramic of Power Sources, 2018, 407: 112-122.
Society of Japan, 2011, 119(11): 855-860. [32] GUZZO P L, MARINHO DE BARROS F B, SOARES B R, et al.
[12] XU Z L, LIU X M, LUO Y S, et al. Nanosilicon anodes for high Evaluation of particle size reduction and agglomeration in dry grinding
performance rechargeable batteries[J]. Progress in Materials Science, of natural quartz in a planetary ball mill[J]. Powder Technology,
2017, 90: 1-44. 2020, 368: 149-159.
[13] HUANG S,REN J G,LIU R, et al. The progress of novel binder as [33] ZHANG L Z (张莲芝), WEI J T (魏镜弢), WU Z Y (吴张永).
a non-ignorable part to improve the performance of Si-based anodes Structure and property of magnetic Fe 3O 4 nanoparticles fabricated by
for Li ion batteries[J]. International Journal of Energy Research, high energy ball mill[J]. Bulletin of the Chinese Ceramic Society (硅
2018, 42: 919-935. 酸盐通报), 2016, 35(1): 78-82.
[14] WU H, CUI Y. Designing nanostructured Si anodes for high energy [34] LEE J H, KIM W J, KIM J Y, et al. Spherical silicon/graphite/carbon
lithium ion batteries[J]. Nano Today, 2012, 7: 414-429. composites as anode material for lithium-ion batteries[J]. Journal of
[15] DOH C H, PARK C W, SHIN H M, et al. A new SiO/C anode Power Sources, 2018, 176: 353-358.
composition for lithium-ion battery[J]. Journal of Power Sources, [35] KHOMENKO V G, BARSUKOV V Z, DONINGER J E, et al.
2008, 179(1): 367-370. Lithium-ion batteries based on carbon-silicon-graphite composite
[16] MIYACHI M, YAMAMOTO H, KAWAI H, et al. Analysis of SiO anodes[J]. Journal of Power Sources, 2007, 165: 598-608.
anodes for lithium-ion batteries[J]. Journal of The Electrochemical [36] WEN Z S, YANG J, WANG B F, et al. High capacity silicon/carbon
Society, 2006, 153(10): A2089-A2091. composite anode materials for lithium ion batteries[J]. Electrochemistry
[17] MAKOVICKA J, SEDLARIKOVA M, ARENILLAS A, et al. Communications, 2003, 5: 165-168.
Expanded graphite as an intercalation anode material for lithium [37] DING B, HUANG X N, CAI Z F, et al. Effects of binders on
systems[J]. Solid State Electrochem, 2009, 13(9): 1467-1471. electrochemical properties of high capacity silicon composite
[18] KASKHEDIKAR N A, CUI G L, MAIER J, et al. Superfine anodes[J]. Inorganic Chemistry Communications, 2020, 113: 107771.
expanded graphite with large capacity for lithium storage[J]. [38] ZHANG Q L, LIN N, XU T J, et al. Scalable synthesis of carbon
Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637(5): stabilized SiO/graphite sheets composite as anode for high-performance
523-529. Li ion batteries[J]. RSC Advances, 2017, 7: 39762-39766.
[19] YANG S B (杨绍斌), FEI X F (费晓飞), JIANG N (蒋娜). Influences [39] WU D, XIE H M, TANG M J, et al. A new method for the
of increasing interlayer space on the properties of lithium storage of characterization of micro-/nano-periodic structures based on microscopic
natural graphite[J]. Acta Chimica Sinica (化学学报), 2009, 67(17): Moiré fringes[J]. Ultramicroscopy, 2014, 136: 1-6.
1995-2000. [40] CHEN L C, TSAI L H. Dual phase-shifting Moiré projection with
[20] HWANG S, LEE J, YOON W. Electrochemical behavior of carbon- tunable high contrast fringes for three-dimensional microscopic surface
coated silicon monoxide electrode with chromium coating in rechargeable profilometry[J]. Physics Procedia, 2011, 19: 67-75.
lithium cell[J]. Journal of Power Sources, 2013, 244: 620-624. [41] CAI Z F, MA Y Z, HUANG X N, et al. High electrochemical stability
[21] LU Y (路阳), PENG G W (彭国伟), WANG Z P (王智平). Al-doped spinel LiMn 2O 4 cathode material for Li-ion batteries[J].
Preparation of expanded graphite and factors affecting its expansion Journal of Energy Storage, 2020, 27: 101036.