Page 168 - 《精细化工》2020年 第10期
P. 168

·2098·                            精细化工   FINE CHEMICALS                                 第 37 卷

            参考文献:                                                  volume[J].  Materials  Review  B:  Research  Part  (材料导报 B:  研究
                                                                   篇), 2011, 25(12): 20-23.
            [1]   HUANG Y G, LIN X L, PAN Q C, et al. Al@C/Expanded graphite   [22]  JIAN  Z  M,  LIU  H  B,  KUANG  J  C,  et al.  Natural  flake  graphite
                 composite as anode material for lithium ion batteries[J]. Electrochimica   modified  by  mild oxidation  and  carbon  coating  treatment  as  anode
                 Acta, 2016, 193: 253-260.                         material for lithium ion batteries[J]. Procedia Engineering, 2012, 27:
            [2]   CHEN Z X, QIAN J F, AI X P, et al. Electrochemical performances   55-62.
                 of  Al-based  composites  as  anode  materials  for  Li-ion  batteries[J].   [23]  LIN Y X, HUANG Z H, YU X L, et al. Mildly expanded graphite for
                 Electrochimica Acta, 2009, 54: 4118-4122.         anode materials of lithium ion battery synthesized with    perchloric
            [3]   CHANG  X  H,  XIE  Z  W,  LIU  Z  L,  et al.  Aluminum:  An   acid[J]. Electrochimica Acta, 2014, 116: 170-174.
                 underappreciated anode material for lithium-ion batteries[J]. Energy   [24]  LEE  D  J,  RYOU  M  H,  LEE  J  N,  et al.  Nitrogen-doped  carbon
                 Storage Materials, 2020, 25: 93-99.               coating  for  a  high-performance  SiO  anode  in  lithium-ion
            [4]   OBROVAC M N, CHRISTENSEN L. Structural changes in silicon   batteries[J].Electrochemistry Communications, 2013, 34: 98-101.
                 anodes  during  lithium  insertionlextraction[J].  Electrochemical  and   [25]  WANG R,  WANG J,  CHEN S,  et al.  Toward  mechanically  stable
                 Solid-State Letters, 2004, 7(5): A93-A96.         silicon-based  anodes  using  Si/SiO x@C  hierarchical  structures  with
            [5]   PARK C M, KIM J H, KIM H, et al. Li-alloy based anode materials   well-controlled  internal  buffer  voids[J].  ACS  Applied  Materials &
                 for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39:   Interfaces, 2018, 10: 41422-41430.
                 3115-3141.                                    [26]  HWA  Y,  PARK  C  M,  SOHN  H  J.  Modified  SiO  as  a  high
            [6]   FENG X J (冯雪娇), CUI H M (崔红敏), XIAO Z Q (肖正强),et al.   performance anode for Li-ion batteries[J]. Journal of Power Sources,
                 Synthesis of porous silicon oxide/silicon/carbon composite material   2013, 222(2): 129-134.
                 from  micro-SiO  for  lithium  storage[J].  Chinese  Journal  of  Applied   [27]  SI  Q,  HANAI  K,  ICHIKAWA  T,  et al.  Improvement  of  cyclic
                 Chemistry (应用化学),2017, 34(1): 76-82.              behavior of a ball-milled SiO and carbon nanofiber composite anode
            [7]   WANG  B  R,  JIN  J,  WEN  Z  Y.  In situ synthesis of  core-shell   for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(22):
                 structured Ge@NC hybrids as high performance anode material for   9774-9779.
                 lithium-ion  batteries[J].  Chemical  Engineering  Journal,  2019,  360:   [28]  HYUNJUNG  K,  BYUNGHEE  H,  JAEBUM  C,  et al.  Three-
                 1301-1309.                                        dimensional  porous  silicon  particles  for  use  in  high-performance
            [8]   GUO  W,  MEI  L,  FENG  Q  Q,  et al.  Facile  synthesis  of  Ge/C   lithium  secondary  batteries[J].  Angewandte  Chemie  International
                 nanocomposite  as  superior  battery  anode  material[J].  Materials   Edition, 2008, 47(52): 10151-10154.
                 Chemistry and Physics, 2015, 168: 6-9.        [29]  CHEN  W,  FAN  Z,  DHANABALAN  A,  et al.  Mesoporous  silicon
            [9]   ZHAO M, ZHAO D L, HAN X Y, et al. Ge nanoparticles embedded   anodes  prepared  by  magnesiothenwic  reduction  for  lithium  ion
                 in spherical ordered mesoporous carbon as anode material for high   batteries[J].  Journal  of  the  Electrochemical  Society,  2011,  158(9):
                 performance lithium ion batteries[J]. Electrochimica Acta, 2018, 287:   A1055-A1059.
                 21-28.                                        [30]  XING A, ZHANG J, BAO Z H, et al. A magnesiothermic reaction
            [10]  SONG  F,  YANG  X  L,  ZHANG  S  Z,  et al.  High-performance   process  for  the  sealable  production  of  mesoporous  silicon  for
                 phosphorus-modified SiO/C anode material for lithium ion batteries[J].   rechargeable  lithium  batteries[J].  Chemical  Communications,  2013,
                 Ceramics International, 2018, 44: 18509-18515.     49(60): 6743-6745.
            [11]  HIDEYUKI Y, KUNIHIRO N, SHINJI N, et al. Investigation of the   [31]  WU  W,  WANG  M,  WANG  R,  et al.  Magnesio-mechanochemical
                 irreversible  reaction  mechanism  and  the  reactive  trigger  on  SiO   reduced SiO x for high-performance lithium ion batteries[J]. Journal
                 anode  material  for  lithium-ion  battery[J].  Journal  of  the  Ceramic   of Power Sources, 2018, 407: 112-122.
                 Society of Japan, 2011, 119(11): 855-860.     [32]  GUZZO P L, MARINHO DE BARROS F B, SOARES B R, et al.
            [12]  XU Z  L, LIU  X  M,  LUO  Y  S,  et al.  Nanosilicon  anodes  for  high   Evaluation of particle size reduction and agglomeration in dry grinding
                 performance rechargeable batteries[J]. Progress in Materials Science,   of  natural  quartz  in  a  planetary  ball  mill[J].  Powder  Technology,
                 2017, 90: 1-44.                                   2020, 368: 149-159.
            [13]  HUANG S,REN J G,LIU R, et al. The progress of novel binder as   [33]  ZHANG  L  Z  (张莲芝), WEI J T (魏镜弢),  WU  Z  Y  (吴张永).
                 a non-ignorable part to improve the performance of Si-based anodes   Structure and property of magnetic Fe 3O 4 nanoparticles fabricated by
                 for  Li  ion  batteries[J].  International  Journal  of  Energy  Research,   high energy ball mill[J]. Bulletin of the Chinese Ceramic Society (硅
                 2018, 42: 919-935.                                酸盐通报), 2016, 35(1): 78-82.
            [14]  WU H, CUI Y. Designing nanostructured Si anodes for high energy   [34]  LEE J H, KIM W J, KIM J Y, et al. Spherical silicon/graphite/carbon
                 lithium ion batteries[J]. Nano Today, 2012, 7: 414-429.     composites as anode material for lithium-ion batteries[J]. Journal of
            [15]  DOH  C  H,  PARK  C  W,  SHIN  H  M,  et al.  A  new  SiO/C  anode   Power Sources, 2018, 176: 353-358.
                 composition  for  lithium-ion  battery[J].  Journal  of  Power  Sources,   [35]  KHOMENKO  V  G,  BARSUKOV  V  Z,  DONINGER  J  E,  et al.
                 2008, 179(1): 367-370.                            Lithium-ion  batteries  based  on  carbon-silicon-graphite  composite
            [16]  MIYACHI M, YAMAMOTO H, KAWAI H, et al. Analysis of SiO   anodes[J]. Journal of Power Sources, 2007, 165: 598-608.
                 anodes  for  lithium-ion  batteries[J].  Journal  of  The  Electrochemical   [36]  WEN Z S, YANG J, WANG B F, et al. High capacity silicon/carbon
                 Society, 2006, 153(10): A2089-A2091.              composite anode materials for lithium ion batteries[J]. Electrochemistry
            [17]  MAKOVICKA  J,  SEDLARIKOVA  M,  ARENILLAS  A,  et al.   Communications, 2003, 5: 165-168.
                 Expanded  graphite  as  an  intercalation  anode  material  for  lithium   [37]  DING  B,  HUANG  X  N,  CAI  Z  F,  et al.  Effects  of  binders  on
                 systems[J]. Solid State Electrochem, 2009, 13(9): 1467-1471.     electrochemical  properties  of  high  capacity  silicon  composite
            [18]  KASKHEDIKAR  N  A,  CUI  G  L,  MAIER  J,  et al.  Superfine   anodes[J]. Inorganic Chemistry Communications, 2020, 113: 107771.
                 expanded  graphite  with  large  capacity  for  lithium  storage[J].   [38]  ZHANG Q L, LIN N, XU  T J,  et al.  Scalable synthesis of carbon
                 Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637(5):   stabilized SiO/graphite sheets composite as anode for high-performance
                 523-529.                                          Li ion batteries[J]. RSC Advances, 2017, 7: 39762-39766.
            [19]  YANG S B (杨绍斌), FEI X F (费晓飞), JIANG N (蒋娜). Influences   [39]  WU  D,  XIE  H  M,  TANG  M  J,  et al.  A  new  method  for  the
                 of increasing interlayer space on the properties of lithium storage of   characterization of micro-/nano-periodic structures based on microscopic
                 natural graphite[J]. Acta Chimica Sinica (化学学报), 2009, 67(17):   Moiré fringes[J]. Ultramicroscopy, 2014, 136: 1-6.
                 1995-2000.                                    [40]  CHEN  L  C,  TSAI  L  H.  Dual  phase-shifting  Moiré  projection  with
            [20]  HWANG S, LEE J, YOON W. Electrochemical behavior of carbon-   tunable high contrast fringes for three-dimensional microscopic surface
                 coated silicon monoxide electrode with chromium coating in rechargeable   profilometry[J]. Physics Procedia, 2011, 19: 67-75.
                 lithium cell[J]. Journal of Power Sources, 2013, 244: 620-624.     [41]  CAI Z F, MA Y Z, HUANG X N, et al. High electrochemical stability
            [21]  LU  Y  (路阳),  PENG  G  W  (彭国伟),  WANG  Z  P  (王智平).   Al-doped  spinel  LiMn 2O 4  cathode  material  for  Li-ion  batteries[J].
                 Preparation of expanded graphite and factors affecting its expansion   Journal of Energy Storage, 2020, 27: 101036.
   163   164   165   166   167   168   169   170   171   172   173