Page 25 - 《精细化工》2020年 第10期
P. 25

第 10 期                       刘   璞,等:  碱性电解水析氢中的异质结构催化剂                                 ·1955·


            (3)可提供满足大型商用电解水装置需求的 1 A/cm                   2    [7]   Energy  Efficiency  and  Renewable  Energy.  Hydrogen  production
                                                                   roadmap: Technology pathways to the future[R]. Washington: EEER,
            大电流密度;(4)具有成本优势。
                                                                   2009.
                 目前,在开发新型高效的异质结构催化剂的过                          [8]   CRABTREE G W, DRESSELHAUS M S, BUCHANAN M V. The
            程中也暴露出一些问题:                                            hydrogen economy[J]. Physics Today, 2004, 57(12): 39-44.
                                                               [9]   STIEGEL G J, RAMEZAN M. Hydrogen from coal gasification: An
                (1)不同工作中催化剂之间的固有活性难以比                              economical pathway to a sustainable energy future[J]. International
            较。随着纳米技术的应用、相较于平面架构的三维                                 Journal of Coal Geology, 2006, 65(3/4): 173-190.
                                                               [10]  TURNER J, SVERDRUP G, MANN M K, et al. Renewable hydrogen
            架构催化剂的出现,不同催化剂之间的内在活性的                                 production[J]. International Journal of Energy Research, 2018, 32(5):
            比较愈发困难。在不同课题组的工作中,有相似成                                 379-407.
            分和纳米结构的催化剂也会表现出不同的催化性                              [11]  LIM J,  PARK D,  JEON  S  S, et al.  Ultrathin  IrO 2  nanoneedles  for
                                                                   electrochemical water oxidation[J]. Advanced Functional Materials,
            能,在不同的工作中,催化剂由于合成方法不同,                                 2018, 28(4): 1704796-1705802.
            催化剂的表面负载量不同、电化学电容、电化学测                             [12]  LI Y J, SUN Y J, QIN Y N, et al. Recent advances on water-splitting
                                                                   electrocatalysis  mediated  by  noble-metal-based  nanostructured
            试方法及环境等存在的差异,相关信息的缺失,这                                 materials[J].   Advanced   Energy   Materials,   2020,   10(11):
            些将对跟踪该领域的研究者产生误导。研究者应尽                                 1903120-1903139.
                                                               [13]  ZHANG L H, HAN L Y, LIU H X, et al. Potential-cycling synthesis
            可能提供详尽准确的相关研究信息,同时避免在工
                                                                   of single platinum atoms for efficient hydrogen evolution in neutral
            作中一味追求某一催化剂的高性能,希望能有更加                                 media[J].  Angewandte  Chemie  International  Edition,  2017,  56(44):
            系统的工作来阐述材料选择对性能影响的普遍规律。                                13694-13698.
                                                               [14]  ZHANG  Y,  ZHOU  Q,  ZHU  J  X,  et al.  Nanostructured  metal
                (2)材料设计层面缺乏更深入的理论指导。在                              chalcogenides  for  energy  storage  and  electrocatalysis[J].  Advanced
            理论分析层面,异质结构催化剂的高催化活性常被                                 Functional Materials, 2017, 27(35): 1702317-1702350.
                                                               [15]  FAN  H  S,  YU  H,  ZHANG  Y  F,  et al.  Fe-doped  Ni 3C  nanodots  in
            归因于协同效应,然而协同效应的实质还未被真正                                 N-doped  carbon  nanosheets  for  efficient  hydrogen-evolution  and
            理解,未来需要更多可靠的证据来加以澄清,目前,                                oxygen-evolution   electrocatalysis[J].   Angewandte   Chemie
                                                                   International Edition, 2017, 56(41): 12566-12570.
            对于异质结构催化剂催化机理的分析大都局限于
                                                               [16]  FENG  J  X,  DING  L  X,  YE  S  H,  et al.  Co(OH) 2@PANI  hybrid
            Tafel 斜率和 DFT 模拟等。但合成的异质结构催化                           nanosheets  with  3D  networks  as  high-performance  electrocatalysts
            剂大都具有精细的纳米结构,催化剂暴露出的晶面                                 for  hydrogen  evolution  reaction[J].  Advanced  Materials,  2015,
                                                                   27(44): 7051-7057.
            复杂,对其分析困难,且两相异质界面复杂的晶格                             [17]  CHEN G F, MA T Y, LIU Z Q, et al. Efficient and stable bifunctional
            匹配对 DFT 模拟工作也提出了挑战,基于 Tafel 曲                          electrocatalysts  Ni/Ni xM y  (M=P,  S)  for  overall  water  splitting[J].
                                                                   Advanced Functional Materials, 2016, 26(19): 3314-3323.
            线与 DFT 模拟的动力学分析的信服力不够充分。为
                                                               [18]  YAN D F, LI Y X, HUO J, et al. Defect chemistry of nonprecious-
            进一步探究催化剂的动力学过程,电催化过程的原                                 metal  electrocatalysts for oxygen reactions[J]. Advanced Materials,
            位表征的需求更加迫切(如原位 Raman 技术等),                             2017, 29(48): 1606459-1606478.
                                                               [19]  VOIRY D, YAMAGUCHI H, LI J, et al. Enhanced catalytic activity
            希望借助此手段能真正揭开人们对碱性条件下异质                                 in  strained  chemically  exfoliated  WS 2  nanosheets  for  hydrogen
            结构催化机理的困惑,为今后异质结构催化剂的发                                 evolution[J]. Nature Materials, 2013, 12(9): 850-855.
                                                               [20]  KIM  Y,  JACKSON  D  H,  LEE  D,  et al. In situ  electrochemical
            展提供理论指导,加速实现高效电催化析氢催化剂                                 activation of atomic layer deposition coated MoS 2 basal planes for
            的实用化。                                                  efficient  hydrogen  evolution  reaction[J].  Advanced  Functional
                                                                   Materials, 2017, 27(34): 1701825.
            参考文献:                                              [21]  OUYANG  C  B,  WANG  X,  WANG  S  Y.  Phosphorus-doped  CoS 2
                                                                   nanosheet arrays  as ultra-efficient electrocatalysts for the hydrogen
            [1]   SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory   evolution  reaction[J].  Chemical  Communications,  2015,  51(75):
                 and experiment in electrocatalysis: Insights into materials design[J].   14160-14163.
                 Science, 2017, 355(6321): eaad4998.           [22]  XU C, PENG S J, TAN C L, et al. Ultrathin S-doped MoSe 2 nanosheets
            [2]   LEWIS N S, NOCERA D G. Powering the planet: Chemical challenges   for  efficient hydrogen  evolution[J].  Journal of  Materials Chemistry
                 in solar energy utilization[J]. Proceedings of the National Academy   A, 2014, 2(16): 5597-5601.
                 of Sciences, 2006, 103(43): 15729-15735.      [23]  TAO  L,  DUAN  X  D,  WANG  C,  et al.  Plasma-engineered  MoS 2
            [3]   YAN  Y,  XIA  B  Y,  ZHAO  B,  et al.  A  review  on  noble-metal-free   thin-film  as  an  efficient  electrocatalyst  for  hydrogen  evolution
                 bifunctional heterogeneous catalysts for overall electrochemical water   reaction[J]. Chemical Communications, 2015, 51(35): 7470-7473.
                 splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587-   [24]  FENG J X, WU J Q, TONG Y X, et al. Efficient hydrogen evolution
                 17603.                                            on  Cu  nanodots-decorated  Ni 3S 2  nanotubes  by  optimizing  atomic
            [4]   International  Energy  Agency.  The  future  of  hydrogen[R].  Chicago:   hydrogen  adsorption  and  desorption[J].  Journal  of  the  American
                 IEA, 2019.                                        Chemical Society, 2018, 140(2): 610-617.
            [5]   SANTOS  D  M  F,  SEQUEIRA  C  A  C,  FIGUEIREDO  J  L,  et al.   [25]  CHUNG D Y, JUN S W, YOON G, et al. Large-scale synthesis of
                 Hydrogen  production  by  alkaline  water  electrolysis[J].  Química   carbon-shell-coated FeP nanoparticles for robust hydrogen evolution
                 Nova, 2013, 36(8): 1176-1193.                     reaction electrocatalyst[J]. Journal of the American Chemical Society,
            [6]   SHAFIE  M  E,  KAMBARA  S,  HAYAKAWA  Y,  et al.  Hydrogen   2017, 139(19): 6669-6674.
                 production technologies  overview[J].  Journal  of  Power  and  Energy   [26]  ZHANG  Z, LU B  P, HAO J H,  et al. FeP nanoparticles grown on
                 Engineering, 2019, 7(1): 107-154.                 graphene sheets as highly active non-precious-metal electrocatalysts
   20   21   22   23   24   25   26   27   28   29   30