Page 25 - 《精细化工》2020年 第10期
P. 25
第 10 期 刘 璞,等: 碱性电解水析氢中的异质结构催化剂 ·1955·
(3)可提供满足大型商用电解水装置需求的 1 A/cm 2 [7] Energy Efficiency and Renewable Energy. Hydrogen production
roadmap: Technology pathways to the future[R]. Washington: EEER,
大电流密度;(4)具有成本优势。
2009.
目前,在开发新型高效的异质结构催化剂的过 [8] CRABTREE G W, DRESSELHAUS M S, BUCHANAN M V. The
程中也暴露出一些问题: hydrogen economy[J]. Physics Today, 2004, 57(12): 39-44.
[9] STIEGEL G J, RAMEZAN M. Hydrogen from coal gasification: An
(1)不同工作中催化剂之间的固有活性难以比 economical pathway to a sustainable energy future[J]. International
较。随着纳米技术的应用、相较于平面架构的三维 Journal of Coal Geology, 2006, 65(3/4): 173-190.
[10] TURNER J, SVERDRUP G, MANN M K, et al. Renewable hydrogen
架构催化剂的出现,不同催化剂之间的内在活性的 production[J]. International Journal of Energy Research, 2018, 32(5):
比较愈发困难。在不同课题组的工作中,有相似成 379-407.
分和纳米结构的催化剂也会表现出不同的催化性 [11] LIM J, PARK D, JEON S S, et al. Ultrathin IrO 2 nanoneedles for
electrochemical water oxidation[J]. Advanced Functional Materials,
能,在不同的工作中,催化剂由于合成方法不同, 2018, 28(4): 1704796-1705802.
催化剂的表面负载量不同、电化学电容、电化学测 [12] LI Y J, SUN Y J, QIN Y N, et al. Recent advances on water-splitting
electrocatalysis mediated by noble-metal-based nanostructured
试方法及环境等存在的差异,相关信息的缺失,这 materials[J]. Advanced Energy Materials, 2020, 10(11):
些将对跟踪该领域的研究者产生误导。研究者应尽 1903120-1903139.
[13] ZHANG L H, HAN L Y, LIU H X, et al. Potential-cycling synthesis
可能提供详尽准确的相关研究信息,同时避免在工
of single platinum atoms for efficient hydrogen evolution in neutral
作中一味追求某一催化剂的高性能,希望能有更加 media[J]. Angewandte Chemie International Edition, 2017, 56(44):
系统的工作来阐述材料选择对性能影响的普遍规律。 13694-13698.
[14] ZHANG Y, ZHOU Q, ZHU J X, et al. Nanostructured metal
(2)材料设计层面缺乏更深入的理论指导。在 chalcogenides for energy storage and electrocatalysis[J]. Advanced
理论分析层面,异质结构催化剂的高催化活性常被 Functional Materials, 2017, 27(35): 1702317-1702350.
[15] FAN H S, YU H, ZHANG Y F, et al. Fe-doped Ni 3C nanodots in
归因于协同效应,然而协同效应的实质还未被真正 N-doped carbon nanosheets for efficient hydrogen-evolution and
理解,未来需要更多可靠的证据来加以澄清,目前, oxygen-evolution electrocatalysis[J]. Angewandte Chemie
International Edition, 2017, 56(41): 12566-12570.
对于异质结构催化剂催化机理的分析大都局限于
[16] FENG J X, DING L X, YE S H, et al. Co(OH) 2@PANI hybrid
Tafel 斜率和 DFT 模拟等。但合成的异质结构催化 nanosheets with 3D networks as high-performance electrocatalysts
剂大都具有精细的纳米结构,催化剂暴露出的晶面 for hydrogen evolution reaction[J]. Advanced Materials, 2015,
27(44): 7051-7057.
复杂,对其分析困难,且两相异质界面复杂的晶格 [17] CHEN G F, MA T Y, LIU Z Q, et al. Efficient and stable bifunctional
匹配对 DFT 模拟工作也提出了挑战,基于 Tafel 曲 electrocatalysts Ni/Ni xM y (M=P, S) for overall water splitting[J].
Advanced Functional Materials, 2016, 26(19): 3314-3323.
线与 DFT 模拟的动力学分析的信服力不够充分。为
[18] YAN D F, LI Y X, HUO J, et al. Defect chemistry of nonprecious-
进一步探究催化剂的动力学过程,电催化过程的原 metal electrocatalysts for oxygen reactions[J]. Advanced Materials,
位表征的需求更加迫切(如原位 Raman 技术等), 2017, 29(48): 1606459-1606478.
[19] VOIRY D, YAMAGUCHI H, LI J, et al. Enhanced catalytic activity
希望借助此手段能真正揭开人们对碱性条件下异质 in strained chemically exfoliated WS 2 nanosheets for hydrogen
结构催化机理的困惑,为今后异质结构催化剂的发 evolution[J]. Nature Materials, 2013, 12(9): 850-855.
[20] KIM Y, JACKSON D H, LEE D, et al. In situ electrochemical
展提供理论指导,加速实现高效电催化析氢催化剂 activation of atomic layer deposition coated MoS 2 basal planes for
的实用化。 efficient hydrogen evolution reaction[J]. Advanced Functional
Materials, 2017, 27(34): 1701825.
参考文献: [21] OUYANG C B, WANG X, WANG S Y. Phosphorus-doped CoS 2
nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen
[1] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory evolution reaction[J]. Chemical Communications, 2015, 51(75):
and experiment in electrocatalysis: Insights into materials design[J]. 14160-14163.
Science, 2017, 355(6321): eaad4998. [22] XU C, PENG S J, TAN C L, et al. Ultrathin S-doped MoSe 2 nanosheets
[2] LEWIS N S, NOCERA D G. Powering the planet: Chemical challenges for efficient hydrogen evolution[J]. Journal of Materials Chemistry
in solar energy utilization[J]. Proceedings of the National Academy A, 2014, 2(16): 5597-5601.
of Sciences, 2006, 103(43): 15729-15735. [23] TAO L, DUAN X D, WANG C, et al. Plasma-engineered MoS 2
[3] YAN Y, XIA B Y, ZHAO B, et al. A review on noble-metal-free thin-film as an efficient electrocatalyst for hydrogen evolution
bifunctional heterogeneous catalysts for overall electrochemical water reaction[J]. Chemical Communications, 2015, 51(35): 7470-7473.
splitting[J]. Journal of Materials Chemistry A, 2016, 4(45): 17587- [24] FENG J X, WU J Q, TONG Y X, et al. Efficient hydrogen evolution
17603. on Cu nanodots-decorated Ni 3S 2 nanotubes by optimizing atomic
[4] International Energy Agency. The future of hydrogen[R]. Chicago: hydrogen adsorption and desorption[J]. Journal of the American
IEA, 2019. Chemical Society, 2018, 140(2): 610-617.
[5] SANTOS D M F, SEQUEIRA C A C, FIGUEIREDO J L, et al. [25] CHUNG D Y, JUN S W, YOON G, et al. Large-scale synthesis of
Hydrogen production by alkaline water electrolysis[J]. Química carbon-shell-coated FeP nanoparticles for robust hydrogen evolution
Nova, 2013, 36(8): 1176-1193. reaction electrocatalyst[J]. Journal of the American Chemical Society,
[6] SHAFIE M E, KAMBARA S, HAYAKAWA Y, et al. Hydrogen 2017, 139(19): 6669-6674.
production technologies overview[J]. Journal of Power and Energy [26] ZHANG Z, LU B P, HAO J H, et al. FeP nanoparticles grown on
Engineering, 2019, 7(1): 107-154. graphene sheets as highly active non-precious-metal electrocatalysts