Page 26 - 《精细化工》2020年 第10期
P. 26
·1956· 精细化工 FINE CHEMICALS 第 37 卷
for hydrogen evolution reaction[J]. Chemical Communications, 2014, [46] DANILOVIC N, SUBBARAMAN R, STRMCNIK D, et al.
50(78): 11554-11557. Enhancing the alkaline hydrogen evolution reaction activity through
[27] WANG A L, LIN J, XU H, et al. Ni 2P-CoP hybrid nanosheet arrays the bifunctionality of Ni(OH) 2/metal catalysts[J]. Angewandte Chemie
supported on carbon cloth as an efficient flexible cathode for hydrogen International Edition, 2012, 51(50): 12495-12498.
evolution[J]. Journal of Materials Chemistry A, 2016, 4(43): 16992- [47] ZENG M, LI Y G. Recent advances in heterogeneous electrocatalysts
16999. for the hydrogen evolution reaction[J]. Journal of Materials Chemistry
[28] WAN C, REGMI Y N, LEONARD B M. Multiple phases of A, 2015, 3(29): 14942-14962.
molybdenum carbide as electrocatalysts for the hydrogen evolution [48] NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in
reaction[J]. Angewandte Chemie International Edition, 2014, 53(25): the exchange current for hydrogen evolution[J]. Journal of The
6407-6410. Electrochemical Society, 2005, 152(3): 23-26.
[29] ANG H X, TAN H T, LUO Z M, et al. Hydrophilic nitrogen and [49] DANILOVIC N, SUBBARAMAN R, STRMCNIK D, et al.
sulfur Co-doped molybdenum carbide nanosheets for electrochemical Electrocatalysis of the HER in acid and alkaline media[J]. Journal of
hydrogen evolution[J]. Small, 2015, 11(47): 6278-6284. The Serbian Chemical Society, 2013, 78(12): 2007-2015.
[30] ANG H X, WANG H W, LI B, et al. 3D Hierarchical porous Mo 2C [50] STRMCNIK D, UCHIMURA M, WANG C, et al. Improving the
for efficient hydrogen evolution[J]. Small, 2016, 12(21): 2859-2865. hydrogen oxidation reaction rate by promotion of hydroxyl
[31] CHEN W F, SASAKI K, MA C, et al. Hydrogen-evolution catalysts adsorption[J]. Nature Chemistry, 2013, 5(4): 300-306.
based on non-noble metal nickel-molybdenum nitride nanosheets[J]. [51] SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in
Angewandte Chemie International Edition, 2012, 51(25): 6131-6135. activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn)
[32] YAN H J, TIAN C G, WANG L, et al. Phosphorus-modified tungsten hydr(oxy)oxide catalysts[J]. Nature Materials, 2012, 11(6): 550-557.
nitride/reduced graphene oxide as a high-performance, non-noble-metal [52] YIN H J, ZHAO S L, ZHAO K, et al. Ultrathin platinum nanowires
electrocatalyst for the hydrogen evolution reaction[J]. Angewandte grown on single-layered nickel hydroxide with high hydrogen evolution
Chemie International Edition, 2015, 54(21): 6325-6329. activity[J]. Nature Communications, 2015, 6(1): 1-8.
[33] FRENSLEY W R. Heterostructures and quantum devices[M]. New [53] HINNEMANN B, MOSES P G, BONDE J L, et al. Biomimetic
York: Academic Press, 1994. hydrogen evolution: MoS 2 nanoparticles as catalyst for hydrogen
[34] ZHAO G, RUI K, DOU S X, et al. Heterostructures for evolution[J]. Journal of the American Chemical Society, 2005, 127(15):
electrochemical hydrogen evolution reaction: A review[J]. Advanced 5308-5309.
Functional Materials, 2018, 28(43): 1803291. [54] JARAMILLO T, JØRGENSEN K P, BONDE J, et al. Identification
[35] NIKAM R D, LU A Y, SONAWANE P A, et al. Three-dimensional of active edge sites for electrochemical H 2 evolution from MoS 2
heterostructures of MoS 2 nanosheets on conducting MoO 2 as an nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
efficient electrocatalyst to enhance hydrogen evolution reaction[J]. [55] HU J, ZHANG C X, JIANG L, et al. Nanohybridization of MoS 2
ACS Applied Materials & Interfaces, 2015, 7(41): 23328-23335. with layered double hydroxides efficiently synergizes the hydrogen
[36] YANG L J, ZHOU W J, HOU D M, et al. Porous metallic MoO 2- evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
supported MoS 2 nanosheets for enhanced electrocatalytic activity in [56] ZHANG B, LIU J, WANG J S, et al. Interface engineering: The
hydrogen evolution reaction[J]. Nanoscale, 2015, 7(12): 5203-5208. Ni(OH) 2/MoS 2 heterostructure for highly efficient alkaline hydrogen
[37] QU Q, ZHANG J H, WANG J, et al. Three-dimensional ordered evolution[J]. Nano Energy, 2017, 37(37): 74-80.
mesoporous Co 3O 4 enhanced by Pd for oxygen evolution reaction[J]. [57] CHEN L L, ZHANG J Y, REN X, et al. A Ni(OH) 2-CoS 2 hybrid
Scientific Reports, 2017, 7(1): 1-9. nanowire array: A superior non-noble-metal catalyst toward the
[38] WANG D Y, GONG M, CHOU H L, et al. Highly active and stable hydrogen evolution reaction in alkaline media[J]. Nanoscale, 2017,
hybrid catalyst of cobalt-doped FeS 2 nanosheets-carbon nanotubes 9(43): 16632-16637.
for hydrogen evolution reaction[J]. Journal of the American Chemical [58] YU X W, ZHAO J, ZHENG L R, et al. Hydrogen evolution reaction
Society, 2015, 137(4): 1587-1592. in alkaline media: Alpha- or beta-nickel hydroxide on the surface of
[39] ZOU X, LIU Y P, LI G D, et al. Ultrafast formation of amorphous platinum? [J]. ACS Energy Letters, 2017, 3(1): 237-244.
bimetallic hydroxide films on 3D conductive sulfide nanoarrays for [59] ZHANG X P, ZHU S Y, XIA L, et al. Ni(OH) 2-Fe 2P hybrid nanoarray
large-current-density oxygen evolution electrocatalysis[J]. Advanced for alkaline hydrogen evolution reaction with superior activity[J].
Materials, 2017, 29(22): 1700404. Chemical Communications, 2018, 54(10): 1201-1204.
[40] YIN S M, TU W G, SHENG Y, et al. A highly efficient oxygen [60] GAO M, CHEN L L, ZHANG Z H, et al. Interface engineering of the
evolution catalyst consisting of interconnected nickel-iron-layered Ni(OH) 2-Ni 3N nanoarray heterostructure for the alkaline hydrogen
double hydroxide and carbon nanodomains[J]. Advanced Materials, evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(3):
2017, 30(5): 1705106. 833-836.
[41] ZHOU X L, LIU Y, JU H X, et al. Design and epitaxial growth of [61] HENDERSON M A, JOYCE S A, RUSTAD J R. Interaction of water
MoSe 2-NiSe vertical heteronanostructures with electronic modulation with the (1×1) and (2×1) surfaces of α-Fe 2O 3(012)[J]. Surface
for enhanced hydrogen evolution reaction[J]. Chemistry of Materials, Science, 1998, 417(1): 66-81.
2016, 28(6): 1838-1846. [62] XU H, ZHANG R Q, NG A M C, et al. Splitting water on metal
[42] WANG F M, HE P, LI Y C, et al. Interface engineered W xC@WS 2 oxide surfaces[J]. The Journal of Physical Chemistry C, 2011,
nanostructure for enhanced hydrogen evolution catalysis[J]. Advanced 115(40): 19710-19715.
Functional Materials, 2017, 27(7): 1605802. [63] HENRICH V E, COX P A. The surface science of metal oxides[M].
[43] GAO M R, LIANG J X, ZHENG Y R, et al. An efficient molybdenum Cambridge: Cambridge University Press, 1996.
disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen [64] GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nickel
generation[J]. Nature Communications, 2015, 6(1): 5982-5982. heterostructures for active hydrogen evolution electrocatalysis[J].
[44] HAN C, WANG D W, LI Q, et al. Ni 17W 3 nanoparticles decorated Nature Communications, 2014, 5(1): 4695-4599.
WO 2 nanohybrid electrocatalyst for highly efficient hydrogen [65] ZHAO L, ZHANG Y, ZHAO Z L, et al. Steering elementary steps
evolution reaction[J]. ACS Applied Energy Materials, 2019, 2(4): towards efficient alkaline hydrogen evolution via size-dependent
2409-2413. Ni/NiO nanoscale heterosurfaces[J]. National Science Review, 2020,
[45] SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al.
7(1): 27-36.
Enhancing hydrogen evolution activity in water splitting by tailoring
+
Li -Ni(OH) 2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. (下转第 1976 页)