Page 26 - 《精细化工》2020年 第10期
P. 26

·1956·                            精细化工   FINE CHEMICALS                                 第 37 卷

                 for hydrogen evolution reaction[J]. Chemical Communications, 2014,   [46]  DANILOVIC  N,  SUBBARAMAN  R,  STRMCNIK  D,  et al.
                 50(78): 11554-11557.                              Enhancing the alkaline hydrogen evolution reaction activity through
            [27]  WANG A L, LIN J, XU H, et al. Ni 2P-CoP hybrid nanosheet arrays   the bifunctionality of Ni(OH) 2/metal catalysts[J]. Angewandte Chemie
                 supported on carbon cloth as an efficient flexible cathode for hydrogen   International Edition, 2012, 51(50): 12495-12498.
                 evolution[J]. Journal of Materials Chemistry A, 2016, 4(43): 16992-   [47]  ZENG M, LI Y G. Recent advances in heterogeneous electrocatalysts
                 16999.                                            for the hydrogen evolution reaction[J]. Journal of Materials Chemistry
            [28]  WAN  C,  REGMI  Y  N,  LEONARD  B  M.  Multiple  phases  of   A, 2015, 3(29): 14942-14962.
                 molybdenum carbide as electrocatalysts for the hydrogen evolution   [48]  NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in
                 reaction[J]. Angewandte Chemie International Edition, 2014, 53(25):   the  exchange  current  for  hydrogen  evolution[J].  Journal  of  The
                 6407-6410.                                        Electrochemical Society, 2005, 152(3): 23-26.
            [29]  ANG  H  X,  TAN  H  T,  LUO  Z  M,  et al.  Hydrophilic  nitrogen  and   [49]  DANILOVIC  N,  SUBBARAMAN  R,  STRMCNIK  D,  et al.
                 sulfur Co-doped molybdenum carbide nanosheets for electrochemical   Electrocatalysis of the HER in acid and alkaline media[J]. Journal of
                 hydrogen evolution[J]. Small, 2015, 11(47): 6278-6284.   The Serbian Chemical Society, 2013, 78(12): 2007-2015.
            [30]  ANG H X, WANG H W, LI B, et al. 3D Hierarchical porous Mo 2C   [50]  STRMCNIK  D,  UCHIMURA  M,  WANG  C,  et al.  Improving  the
                 for efficient hydrogen evolution[J]. Small, 2016, 12(21): 2859-2865.   hydrogen  oxidation  reaction  rate  by  promotion  of  hydroxyl
            [31]  CHEN W F, SASAKI K, MA C, et al. Hydrogen-evolution catalysts   adsorption[J]. Nature Chemistry, 2013, 5(4): 300-306.
                 based on non-noble metal nickel-molybdenum nitride nanosheets[J].   [51]  SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in
                 Angewandte Chemie International Edition, 2012, 51(25): 6131-6135.   activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn)
            [32]  YAN H J, TIAN C G, WANG L, et al. Phosphorus-modified tungsten   hydr(oxy)oxide catalysts[J]. Nature Materials, 2012, 11(6): 550-557.
                 nitride/reduced graphene oxide as a high-performance, non-noble-metal   [52]  YIN H J, ZHAO S L, ZHAO K, et al. Ultrathin platinum nanowires
                 electrocatalyst  for  the  hydrogen  evolution  reaction[J].  Angewandte   grown on single-layered nickel hydroxide with high hydrogen evolution
                 Chemie International Edition, 2015, 54(21): 6325-6329.   activity[J]. Nature Communications, 2015, 6(1): 1-8.
            [33]  FRENSLEY W  R.  Heterostructures and quantum devices[M]. New   [53]  HINNEMANN B,  MOSES  P  G, BONDE J L, et  al.  Biomimetic
                 York: Academic Press, 1994.                       hydrogen  evolution:  MoS 2  nanoparticles  as  catalyst  for  hydrogen
            [34]  ZHAO G,  RUI  K, DOU S X, et  al.  Heterostructures  for   evolution[J]. Journal of the American Chemical Society, 2005, 127(15):
                 electrochemical hydrogen evolution reaction: A review[J]. Advanced   5308-5309.
                 Functional Materials, 2018, 28(43): 1803291.   [54]  JARAMILLO T, JØRGENSEN K P, BONDE J, et al. Identification
            [35]  NIKAM R D, LU A Y, SONAWANE P A, et al. Three-dimensional   of  active  edge  sites  for  electrochemical  H 2  evolution  from  MoS 2
                 heterostructures  of  MoS 2  nanosheets  on  conducting  MoO 2 as  an   nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
                 efficient  electrocatalyst  to  enhance  hydrogen  evolution  reaction[J].   [55]  HU  J,  ZHANG  C  X,  JIANG  L,  et al.  Nanohybridization  of  MoS 2
                 ACS Applied Materials & Interfaces, 2015, 7(41): 23328-23335.   with layered double hydroxides efficiently synergizes the hydrogen
            [36]  YANG L J, ZHOU W J, HOU D M, et al. Porous metallic MoO 2-   evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
                 supported MoS 2 nanosheets for enhanced electrocatalytic activity in   [56]  ZHANG  B,  LIU  J,  WANG  J  S,  et al.  Interface  engineering:  The
                 hydrogen evolution reaction[J]. Nanoscale, 2015, 7(12): 5203-5208.   Ni(OH) 2/MoS 2 heterostructure for highly efficient alkaline hydrogen
            [37]  QU  Q,  ZHANG  J  H,  WANG  J,  et al.  Three-dimensional  ordered   evolution[J]. Nano Energy, 2017, 37(37): 74-80.
                 mesoporous Co 3O 4 enhanced by Pd for oxygen evolution reaction[J].   [57]  CHEN  L  L,  ZHANG  J  Y,  REN  X,  et al.  A  Ni(OH) 2-CoS 2  hybrid
                 Scientific Reports, 2017, 7(1): 1-9.              nanowire  array:  A  superior  non-noble-metal  catalyst  toward  the
            [38]  WANG D Y, GONG M, CHOU H L, et al. Highly active and stable   hydrogen evolution reaction in alkaline media[J]. Nanoscale, 2017,
                 hybrid  catalyst  of  cobalt-doped  FeS 2  nanosheets-carbon  nanotubes   9(43): 16632-16637.
                 for hydrogen evolution reaction[J]. Journal of the American Chemical   [58]  YU X W, ZHAO J, ZHENG L R, et al. Hydrogen evolution reaction
                 Society, 2015, 137(4): 1587-1592.                 in alkaline media: Alpha- or beta-nickel hydroxide on the surface of
            [39]  ZOU X, LIU Y P, LI G D, et al. Ultrafast formation of amorphous   platinum? [J]. ACS Energy Letters, 2017, 3(1): 237-244.
                 bimetallic hydroxide films on 3D conductive sulfide nanoarrays for   [59]  ZHANG X P, ZHU S Y, XIA L, et al. Ni(OH) 2-Fe 2P hybrid nanoarray
                 large-current-density oxygen evolution electrocatalysis[J]. Advanced   for  alkaline  hydrogen  evolution  reaction  with  superior  activity[J].
                 Materials, 2017, 29(22): 1700404.                 Chemical Communications, 2018, 54(10): 1201-1204.
            [40]  YIN S M,  TU W G,  SHENG  Y,  et al.  A  highly  efficient  oxygen   [60]  GAO M, CHEN L L, ZHANG Z H, et al. Interface engineering of the
                 evolution  catalyst  consisting  of  interconnected  nickel-iron-layered   Ni(OH) 2-Ni 3N  nanoarray  heterostructure  for  the  alkaline  hydrogen
                 double hydroxide and carbon nanodomains[J]. Advanced Materials,   evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(3):
                 2017, 30(5): 1705106.                             833-836.
            [41]  ZHOU X L, LIU Y, JU H X, et al. Design and epitaxial growth of   [61]  HENDERSON M A, JOYCE S A, RUSTAD J R. Interaction of water
                 MoSe 2-NiSe vertical heteronanostructures with electronic modulation   with  the  (1×1)  and  (2×1)  surfaces  of  α-Fe 2O 3(012)[J].  Surface
                 for enhanced hydrogen evolution reaction[J]. Chemistry of Materials,   Science, 1998, 417(1): 66-81.
                 2016, 28(6): 1838-1846.                       [62]  XU  H,  ZHANG  R  Q,  NG  A  M  C,  et al.  Splitting  water  on  metal
            [42]  WANG F M, HE P, LI Y C, et al. Interface engineered W xC@WS 2   oxide  surfaces[J].  The  Journal  of  Physical  Chemistry  C,  2011,
                 nanostructure for enhanced hydrogen evolution catalysis[J]. Advanced   115(40): 19710-19715.
                 Functional Materials, 2017, 27(7): 1605802.   [63]  HENRICH V E, COX P A. The surface science of metal oxides[M].
            [43]  GAO M R, LIANG J X, ZHENG Y R, et al. An efficient molybdenum   Cambridge: Cambridge University Press, 1996.
                 disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen   [64]  GONG M, ZHOU W, TSAI M C, et al. Nanoscale nickel oxide/nickel
                 generation[J]. Nature Communications, 2015, 6(1): 5982-5982.   heterostructures  for  active  hydrogen  evolution  electrocatalysis[J].
            [44]   HAN C, WANG D W, LI Q, et al. Ni 17W 3 nanoparticles decorated   Nature Communications, 2014, 5(1): 4695-4599.
                 WO 2  nanohybrid  electrocatalyst  for  highly  efficient  hydrogen   [65]  ZHAO L, ZHANG Y, ZHAO Z L, et al. Steering elementary steps
                 evolution  reaction[J].  ACS  Applied  Energy  Materials,  2019,  2(4):   towards  efficient  alkaline  hydrogen  evolution via  size-dependent
                 2409-2413.                                        Ni/NiO nanoscale heterosurfaces[J]. National Science Review, 2020,
            [45]  SUBBARAMAN  R,  TRIPKOVIC  D,  STRMCNIK  D,  et al.
                                                                   7(1): 27-36.
                 Enhancing hydrogen evolution activity in water splitting by tailoring
                  +
                 Li -Ni(OH) 2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.         (下转第 1976 页)
   21   22   23   24   25   26   27   28   29   30   31