Page 115 - 《精细化工》2020年第11期
P. 115

+
             第 11 期                马立标,等: K 掺杂 g-C 3 N 4 污泥基复合材料的制备及其光催化性能                           ·2261·

            20 mg/L 的阳离子蓝 X-GRRL 染液进行循环降解实                         2016, 218: 358-365.
                                                               [6]   WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric
            验,实验条件同 1.4 节,以此来评价 AC/K-CN 的光                         photocatalyst  for  hydrogen  production  from  water  under  visible
            催化稳定性,结果见图 10。从图 10 可以看出,                              light[J]. Nature Materials, 2009, 8(1): 76-80.
                                                               [7]   YU  H  J,  ZHAO  Y  F,  ZHOU  C,  et al.  Carbon  quantum  dots/TiO 2
            AC/K-CN 连续使用 5 次后,对阳离子蓝 X-GRRL 的                       composites  for  efficient  photocatalytic  hydrogen  evolution[J].
                                                                   Journal of Materials Chemistry A, 2014, 2(10): 3344-3351.
            降解率仍达到 88.56%,说明所制备的 AC/K-CN 具                     [8]   HU W R, XIE Y, LU S, et al. One-step synthesis of nitrogen-doped
            有较好的光催化稳定性,可循环使用。                                      sludge  carbon  as  a  bifunctional  material  for  the  adsorption  and
                                                                   catalytic  oxidation  of  organic  pollutants[J].  Science  of  the  Total

                                                                   Environment, 2019, 680: 51-60.
                                                               [9]   CHEN  Y  F,  HUANG  W  X,  HE  D  L,  et al.  Construction  of
                                                                   heterostructured  g-C 3N 4/Ag/TiO 2  microspheres  with  enhanced
                                                                   photocatalysis  performance  under  visible-light  irradiation[J].  ACS
                                                                   Appl Mater Interfaces, 2014, 6(16): 14405-14414.
                                                               [10]  XU H, GAN Z X, ZHOU W P, et al. A metal-free 3C-SiC/g-C 3N 4
                                                                   composite with enhanced visible light photocatalytic activity[J]. RSC
                                                                   Advances, 2017, 7(63): 40028-40033.
                                                               [11]  LI  X  W,  WANG  B,  HUANG  Y  H,  et al.  Boosting  photocatalytic
                                                                   degradation  of  RhB  via  interfacial  electronic  effects  between
                                                                   Fe-based ionic liquid and g-C 3N 4[J]. Green Energy & Environment,
                                                                   2019, 4(2): 113-121.
                                                               [12]  RAN R J, MA T Y, GAO G, et al. Porous P-doped graphitic carbon
                                                                   nitride  nanosheets  for  synergistically  enhanced  visible-light
                                                                   photocatalytic  H 2  production[J].  Energy  &  Environmental  Science,
                       图 10    AC/K-CN 光催化稳定性                      2015, 8(12): 3708-3717.
                  Fig. 10    Photocatalytic stability of AC/K-CN   [13]  LI S (李师) WANG Y (王毅). Progress in preparation and application
                                                                   of graphite phase carbon nitride[J]. Leather & Chemical Industry (皮
                                                                   革与化工), 2020, 37(3): 22-32.
            3    结论                                            [14]  LUO B, LIU G, WANG L Z. Recent advances in 2D nanomaterials
                                                                   for photocatalysis[J]. Nanoscale, 2016, 8(13): 6904-6920.
                (1)通过煅烧法,以水性油墨废水絮凝污泥、                          [15]  WANG  Z  T,  XU  J  L,  ZHOU  H,  et al.  Facile  synthesis  of
                                                                   Zn(Ⅱ)-doped  g-C 3N 4  and  their  enhanced  photocatalytic  activity
            三聚氰胺和 K 2 CO 3 为原料制备了 AC/K-CN,其比表                      under visible light irradiation[J]. Rare Metals, 2019, (5): 459-467.
                             2
            面积可达 58.21  m /g,具有更多的活性位点和更大                      [16]  KOH  P  W,  HATTA  M  H  M,  ONG  S  T,  et al.  Photocatalytic
                                                                   degradation of photosensitizing and non-photosensitizing dyes over
            的有效接触面积,具有良好的光催化活性与稳定性。                                chromium doped titania photocatalysts under visible light[J]. Journal
                                                                   of Photochemistry & Photobiology A Chemistry, 2017, 332: 215-223.
                (2)在 500 W 氙灯照射 150 min,AC/K-CN 对
                                                               [17]  KE Y C, GUO H X, WANG D F, et al. ZrO 2/g-C 3N 4 with enhanced
            质量浓度为 20 mg/L 的阳离子蓝 X-GRRL 的降解率                        photocatalytic  degradation  of  methylene  blue  under  visible  light
                                                                   irradiation[J].  Journal  of  Materials  Research,  2014,  29(20):  2473-
            可达 99.09%,比 AC 和纯 g-C 3N 4 分别提高了 43.17%                2482.
            和 46.76%。AC/K-CN 的光催化速率常数为 0.02734                 [18]  ZHOU  J  (周进),  DING  L  (丁玲),  ZHANG  T  (张婷),  et al.
                                                                   Preparation  and  performance  of  g-C 3N 4/CQDs  photocatalytic
               –1
            min ,约为 CN 的 9.8 倍。                                    material[J]. Fine Chemicals (精细化工), 2020, 37(4): 702-709.
                                       2–
                                            +
                (3)光催化机理表明,•O 和 h 是 AC/K-CN 光                  [19]  ZHOU  X  S,  LUO  Z  H,  TAO  P  F,  et al.  Facile  preparation  and
                                                                   enhanced  photocatalytic  H 2-production  activity  of  Cu(OH) 2
            催化降解阳离子蓝 X-GRRL 的主要活性物种。                               nanospheres  modified  porous  g-C 3N 4[J]. Materials Chemistry and
                                                                   Physics, 2014, 143(3): 1462-1468.
                (4)制备的 AC/K-CN 是一种可循环利用的光                      [20]  YU  P  F  (于潘芬),  ZHANG  B  (张宾), LIU R  Z (柳荣展).  et al.
            催化剂,不仅对阳离子染料具有较好的光催化降解                                 Treatment  of  high-concentration  water-based  ink  wastewater  by
                                                                   coagulation-thermal  curing  combined  air  blowing  method[J].
            能力,而且实现了以废治废和污泥的资源化高附加                                 Environmental  Protection  of  Chemical  Industry  (化工环保),  2018,
            值利用。                                                   38(1): 62-66.
                                                               [21]  ZHANG Y Q (张妍青), LIU R Z (柳荣展), ZHANG B (张宾), et al.
                                                                   Treatment of water-based ink wastewater sludge by low-temperature
            参考文献:                                                  heat treatment[J]. Guangdong Chemical Industry (广东化工), 2016,
            [1]   JI H Y (计宏益),  LI  M  Y  (李明玉),  WENG  C  C  (翁畅成).   43(3): 89-90.
                 Preparation of ferroferric oxide by precursor method and its catalytic   [22]  WANG X L, YANG H G. Facile fabrication of high-yield graphitic
                 performance[J]. Fine Chemicals (精细化工), 2020, 37(3): 521-527.     carbon nitride with a large surface area using bifunctional urea for
            [2]   QIAN X F, REN M, YUE D T, et al. Mesoporous TiO 2 films coated   enhanced  photocatalytic  performance[J].  Applied  Catalysis  B:
                 on  carbon  foam  based  on  waste  polyurethane  for  enhanced   Environmental, 2017, 205: 624-630.
                 photocatalytic  oxidation  of  VOCs[J].  Applied  Catalysis  B:   [23]  XIANG  Q  J,  YU  J  G,  JARONICE  M.  Enhanced  photocatalytic
                 Environmental, 2017, 212: 1-6.                    H 2-production  activity  of  graphene-modified  titania  nanosheets[J].
            [3]   CHEN C W (陈婵维), FU Z T (付忠田), YU H L (于洪蕾), et al.   Nanoscale, 2011, 3(9): 3670-3678.
                 Progress in dye wastewater treatment technology[J]. Environmental   [24]  LI J S, LI S L, YANG Y J, et al. Nitrogen-doped Fe/Fe3C@graphitic
                 Protection and Circular Economy (环境保护与循环经济), 2010, (4):   layer/carbon  nanotube  hybrids  derived  from  MOFs:  Efficient
                 39-42.                                            bifunctional  electrocatalysts  for  ORR  and  OER[J].  Chemical
            [4]   GUANG  X,  WANG  Y  Q,  XU  S  N,  et al.  Superior  adsorption   Communications  Royal  Society  of  Chemistry,  2015,  51(13):  2710-
                 performance of graphitic carbon nitride nanosheets for both cationic   2713.
                 and  anionic  heavy  metals  from  wastewater[J].  Chinese  Journal  of   [25]  YAO G Y (姚光远), HUANG W X (黄伟欣), LI C Q (李春全), et al.
                 Chemical Engineering, 2019, 27(2): 305-313.       Preparation  of  g-C 3N 4/kaolin  composite  and  its  photocatalytic
            [5]   WANG Q, YANG Z M. Industrial water pollution, water environment   properties[J]. Journal of Inorganic Materials (无机材料学报), 2016,
                 treatment,  and  health  risks  in  China[J].  Environmental  Pollution,   31(9): 929-934.
   110   111   112   113   114   115   116   117   118   119   120