Page 115 - 《精细化工》2020年第11期
P. 115
+
第 11 期 马立标,等: K 掺杂 g-C 3 N 4 污泥基复合材料的制备及其光催化性能 ·2261·
20 mg/L 的阳离子蓝 X-GRRL 染液进行循环降解实 2016, 218: 358-365.
[6] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric
验,实验条件同 1.4 节,以此来评价 AC/K-CN 的光 photocatalyst for hydrogen production from water under visible
催化稳定性,结果见图 10。从图 10 可以看出, light[J]. Nature Materials, 2009, 8(1): 76-80.
[7] YU H J, ZHAO Y F, ZHOU C, et al. Carbon quantum dots/TiO 2
AC/K-CN 连续使用 5 次后,对阳离子蓝 X-GRRL 的 composites for efficient photocatalytic hydrogen evolution[J].
Journal of Materials Chemistry A, 2014, 2(10): 3344-3351.
降解率仍达到 88.56%,说明所制备的 AC/K-CN 具 [8] HU W R, XIE Y, LU S, et al. One-step synthesis of nitrogen-doped
有较好的光催化稳定性,可循环使用。 sludge carbon as a bifunctional material for the adsorption and
catalytic oxidation of organic pollutants[J]. Science of the Total
Environment, 2019, 680: 51-60.
[9] CHEN Y F, HUANG W X, HE D L, et al. Construction of
heterostructured g-C 3N 4/Ag/TiO 2 microspheres with enhanced
photocatalysis performance under visible-light irradiation[J]. ACS
Appl Mater Interfaces, 2014, 6(16): 14405-14414.
[10] XU H, GAN Z X, ZHOU W P, et al. A metal-free 3C-SiC/g-C 3N 4
composite with enhanced visible light photocatalytic activity[J]. RSC
Advances, 2017, 7(63): 40028-40033.
[11] LI X W, WANG B, HUANG Y H, et al. Boosting photocatalytic
degradation of RhB via interfacial electronic effects between
Fe-based ionic liquid and g-C 3N 4[J]. Green Energy & Environment,
2019, 4(2): 113-121.
[12] RAN R J, MA T Y, GAO G, et al. Porous P-doped graphitic carbon
nitride nanosheets for synergistically enhanced visible-light
photocatalytic H 2 production[J]. Energy & Environmental Science,
图 10 AC/K-CN 光催化稳定性 2015, 8(12): 3708-3717.
Fig. 10 Photocatalytic stability of AC/K-CN [13] LI S (李师) WANG Y (王毅). Progress in preparation and application
of graphite phase carbon nitride[J]. Leather & Chemical Industry (皮
革与化工), 2020, 37(3): 22-32.
3 结论 [14] LUO B, LIU G, WANG L Z. Recent advances in 2D nanomaterials
for photocatalysis[J]. Nanoscale, 2016, 8(13): 6904-6920.
(1)通过煅烧法,以水性油墨废水絮凝污泥、 [15] WANG Z T, XU J L, ZHOU H, et al. Facile synthesis of
Zn(Ⅱ)-doped g-C 3N 4 and their enhanced photocatalytic activity
三聚氰胺和 K 2 CO 3 为原料制备了 AC/K-CN,其比表 under visible light irradiation[J]. Rare Metals, 2019, (5): 459-467.
2
面积可达 58.21 m /g,具有更多的活性位点和更大 [16] KOH P W, HATTA M H M, ONG S T, et al. Photocatalytic
degradation of photosensitizing and non-photosensitizing dyes over
的有效接触面积,具有良好的光催化活性与稳定性。 chromium doped titania photocatalysts under visible light[J]. Journal
of Photochemistry & Photobiology A Chemistry, 2017, 332: 215-223.
(2)在 500 W 氙灯照射 150 min,AC/K-CN 对
[17] KE Y C, GUO H X, WANG D F, et al. ZrO 2/g-C 3N 4 with enhanced
质量浓度为 20 mg/L 的阳离子蓝 X-GRRL 的降解率 photocatalytic degradation of methylene blue under visible light
irradiation[J]. Journal of Materials Research, 2014, 29(20): 2473-
可达 99.09%,比 AC 和纯 g-C 3N 4 分别提高了 43.17% 2482.
和 46.76%。AC/K-CN 的光催化速率常数为 0.02734 [18] ZHOU J (周进), DING L (丁玲), ZHANG T (张婷), et al.
Preparation and performance of g-C 3N 4/CQDs photocatalytic
–1
min ,约为 CN 的 9.8 倍。 material[J]. Fine Chemicals (精细化工), 2020, 37(4): 702-709.
2–
+
(3)光催化机理表明,•O 和 h 是 AC/K-CN 光 [19] ZHOU X S, LUO Z H, TAO P F, et al. Facile preparation and
enhanced photocatalytic H 2-production activity of Cu(OH) 2
催化降解阳离子蓝 X-GRRL 的主要活性物种。 nanospheres modified porous g-C 3N 4[J]. Materials Chemistry and
Physics, 2014, 143(3): 1462-1468.
(4)制备的 AC/K-CN 是一种可循环利用的光 [20] YU P F (于潘芬), ZHANG B (张宾), LIU R Z (柳荣展). et al.
催化剂,不仅对阳离子染料具有较好的光催化降解 Treatment of high-concentration water-based ink wastewater by
coagulation-thermal curing combined air blowing method[J].
能力,而且实现了以废治废和污泥的资源化高附加 Environmental Protection of Chemical Industry (化工环保), 2018,
值利用。 38(1): 62-66.
[21] ZHANG Y Q (张妍青), LIU R Z (柳荣展), ZHANG B (张宾), et al.
Treatment of water-based ink wastewater sludge by low-temperature
参考文献: heat treatment[J]. Guangdong Chemical Industry (广东化工), 2016,
[1] JI H Y (计宏益), LI M Y (李明玉), WENG C C (翁畅成). 43(3): 89-90.
Preparation of ferroferric oxide by precursor method and its catalytic [22] WANG X L, YANG H G. Facile fabrication of high-yield graphitic
performance[J]. Fine Chemicals (精细化工), 2020, 37(3): 521-527. carbon nitride with a large surface area using bifunctional urea for
[2] QIAN X F, REN M, YUE D T, et al. Mesoporous TiO 2 films coated enhanced photocatalytic performance[J]. Applied Catalysis B:
on carbon foam based on waste polyurethane for enhanced Environmental, 2017, 205: 624-630.
photocatalytic oxidation of VOCs[J]. Applied Catalysis B: [23] XIANG Q J, YU J G, JARONICE M. Enhanced photocatalytic
Environmental, 2017, 212: 1-6. H 2-production activity of graphene-modified titania nanosheets[J].
[3] CHEN C W (陈婵维), FU Z T (付忠田), YU H L (于洪蕾), et al. Nanoscale, 2011, 3(9): 3670-3678.
Progress in dye wastewater treatment technology[J]. Environmental [24] LI J S, LI S L, YANG Y J, et al. Nitrogen-doped Fe/Fe3C@graphitic
Protection and Circular Economy (环境保护与循环经济), 2010, (4): layer/carbon nanotube hybrids derived from MOFs: Efficient
39-42. bifunctional electrocatalysts for ORR and OER[J]. Chemical
[4] GUANG X, WANG Y Q, XU S N, et al. Superior adsorption Communications Royal Society of Chemistry, 2015, 51(13): 2710-
performance of graphitic carbon nitride nanosheets for both cationic 2713.
and anionic heavy metals from wastewater[J]. Chinese Journal of [25] YAO G Y (姚光远), HUANG W X (黄伟欣), LI C Q (李春全), et al.
Chemical Engineering, 2019, 27(2): 305-313. Preparation of g-C 3N 4/kaolin composite and its photocatalytic
[5] WANG Q, YANG Z M. Industrial water pollution, water environment properties[J]. Journal of Inorganic Materials (无机材料学报), 2016,
treatment, and health risks in China[J]. Environmental Pollution, 31(9): 929-934.