Page 34 - 《精细化工》2020年第11期
P. 34

·2180·                            精细化工   FINE CHEMICALS                                 第 37 卷

            如“千足虫”、“环滑轮”结构、“DNA 双链型”结                              carbon  anode  with  compact  solid  electrolyte  interphase  film  for
            构等,赋予粘结剂特殊性能,实现硅基锂离子电池                                 superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
                                                               [16]  HE  W  J,  ZHANG  L  F,  LING  M,  et al.  A  self-transition  strategy
            的高电化学特性等。
                                                                   toward  nanostructured  Cu-MoO 2/rGO  composite  as  anodes  for
                 总之,增强粘结剂与硅颗粒、导电剂以及集流                              lithium-ion batteries with high initial coulombic efficiency and cycle
            体之间的黏附性和机械稳定性,保持电极的完整性                                 stability[J].  Journal  of  The  Electrochemical  Society,  2018,  165(2):
            不被破坏是未来硅基锂离子电池发展的重要方向。                                 A355-A360.
                                                               [17]  BLOMGREN  G  E.  The  development  and  future  of  lithium  ion
            同时,高效性粘结剂也利于锂离子电池行业的绿色
                                                                   batteries[J].  Journal  of  the  Electrochemical  Society,  2017,  164(1):
            发展和可持续发展,可进一步扩大锂离子电池的应                                 A5019-A5025.
            用范围。                                               [18]  SHI Y, ZHOU X Y, YU G H. Material and structural design of novel
                                                                   binder systems for high-energy, high-power lithium-ion batteries[J].
            参考文献:                                                  Accounts of Chemical Research, 2017, 50(11): 2642-2652.
                                                               [19]  NGUYEN C C, YOON T, SEO D M, et al. Systematic investigation
            [1]   ZHANG  L,  HU  X  L,  CHEN  C  J,  et al.  In  operando  mechanism
                 analysis on nanocrystalline silicon anode material for reversible and   of  binders  for  silicon  anodes:  Interactions  of  binder  with  silicon
                 ultrafast sodium storage[J]. Advanced Materials, 2017, 29(5): 1604708.     particles and electrolytes and effects of binders on solid electrolyte
            [2]   XIAO J, XU W, WANG D Y, et al. Stabilization of silicon anode for   interphase formation[J]. ACS Applied Materials & Interfaces, 2016,
                                                                   8(19): 12211-12220.
                 Li-ion  batteries[J].  Journal  of  the  Electrochemical  Society,  2010,
                 157(10): 1047-1051.                           [20]  CHOI J W, AURBACH D. Promise and reality of post-lithium-ion
            [3]   ZHANG  S  C,  DU  Z  J,  LIN  R  X,  et al.  Nickel  nanocone-array   batteries  with  high  energy  densities[J].  Nature  Reviews  Materials,
                 supported silicon anode for high-performance lithium-ion batteries[J].   2016, 1(4): 16013.
                 Advanced Materials, 2010, 22(47): 5378-5382.     [21]  GRILLET  A  M,  HUMPLIK  T,  STIRRUP  E  K, et al.  Conductivity
            [4]   ASHURI  M,  HE  Q  R,  SHAW  L  L.  Silicon  as  a  potential  anode   degradation  of  polyvinylidene  fluoride  composite  binder  during
                 material  for  Li-ion  batteries:  Where  size,  geometry  and  structure   cycling:  Measurements  and  simulations  for  lithium-ion  batteries[J].
                 matter[J]. Nanoscale, 2016, 8(1): 74-103.         Journal of the Electrochemical Society, 2016, 163(9): A1859-A1871.
            [5]   LI X  L,  YAN P F, AREY B  W, et al. A stable nanoporous silicon   [22]  CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical,
                 anode  prepared  by  modified  magnesiothermic  reactions[J].  Nano   and  electrical  functionalities  of  binders  for  advanced  energy-storage
                 Energy, 2016, 20: 68-75.                          devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982.
            [6]   WU  J  X,  QIN  X  Y,  ZHANG  H  R,  et al.  Multilayered  silicon   [23]  LI J T, WU Z Y, LU Y Q, et al. Water soluble binder, an electrochemical
                 embedded porous carbon/graphene hybrid film as a high performance   performance booster for electrode materials with high energy density[J].
                 anode[J]. Carbon, 2015, 84: 434-443.              Advanced Energy Materials, 2017, 7(24): 1701185.
            [7]   LUO  Z  P,  XIAO  Q  Z,  LEI  G  T,  et al.  Si  nanoparticles/graphene   [24]  GAO S L, SUN F Y, BRADY A, et al. Ultra-efficient polymer binder
                 composite membrane for high performance silicon anode in lithium   for  silicon  anode  in  high-capacity  lithium-ion  batteries[J].  Nano
                 ion batteries[J]. Carbon, 2016, 98: 373-380.      Energy, 2020, 73: 104804.
            [8]   SHEN C F, GE M Y, ZHANG A Y, et al. Silicon (lithiated)-sulfur full   [25]  SANTIMETANEEDOL A, TRIPURANENI R, CHESTER S A, et al.
                 cells  with  porous  silicon  anode  shielded  by  Nafion  against   Time-dependent  deformation  behavior  of  polyvinylidene  fluoride
                 polysulfides  to  achieve  high  capacity  and  energy  density[J].  Nano   binder:  Implications  on  the  mechanics  of  composite  electrodes[J].
                 Energy, 2016, 19: 68-77.                          Journal of Power Sources, 2016, 332: 118-128.
            [9]   SHANG  H,  ZUO  Z  C,  YU  L,  et al.  Low-temperature  growth  of   [26]  RADIN  M  D,  HY  S,  SINA  M,  et al.  Narrowing the gap between
                 all-carbon  graphdiyne  on  a  silicon  anode  for  high-performance   theoretical  and  practical  capacities  in  Li-ion  layered  oxide  cathode
                 lithium-ion batteries[J]. Advanced Materials, 2018, 30(27): 1801459.     materials[J]. Advanced Energy Materials, 2017, 7(20): 1602888.
            [10]  FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion   [27]  MAZOUZI D, KARKAR Z, HERNANDEZ C R, et al. Critical roles
                 batteries:  From  fundamentals  to  practical  applications[J].  Small,   of binders and formulation at multiscales of silicon-based composite
                 2018, 14(8): 1702737.                             electrodes[J]. Journal of Power Sources, 2015, 280: 533-549.
            [11]  ZHANG L, RAJAGOPALAN R, GUO H P, et al. A green and facile   [28]  LUO L, XU Y L, ZHANG H, et al. Comprehensive understanding of
                 way to prepare granadilla-like silicon-based anode materials for Li-ion   high polar polyacrylonitrile as an effective binder for Li-ion battery
                 batteries[J]. Advanced Functional Materials, 2016, 26(3): 440-446.     nano-Si anodes[J]. ACS Applied Materials & Interfaces, 2016, 8(12):
            [12]  YAO Y, MCDOWELL M T, RYU  Ⅰ, et al. Interconnected silicon   8154-8161.
                 hollow  nanospheres  for  lithium-ion  battery  anodes  with  long  cycle   [29]  WEI L M, HOU Z Y. High performance polymer binders inspired by
                 life[J]. Nano Letters, 2011, 11(7): 2949-2954.     chemical  finishing  of  textiles  for  silicon  anodes  in  lithium  ion
            [13]  PENG  H  L, CHAN C K,  MEISTER S,  et al.  Shape  evolution  of   batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22156-
                 layer-structured bismuth oxychloride nanostructures via low-temperature   22162.
                 chemical  vapor  transport[J].  Chemistry  of  Materials,  2008,  21(2):   [30]  BIE Y T, YANG J, LIU X L, et al. Polydopamine wrapping silicon
                 247-252.                                          cross-linked  with  polyacrylic  acid  as  high-performance  anode  for
            [14]  OHARA S, SUZUKI J, SEKINE K, et al. A thin film silicon anode   lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016,
                 for  Li-ion  batteries  having  a  very  large  specific  capacity  and  long   8(5): 2899-2904.
                 cycle life[J]. Journal of Power Sources, 2004, 136(2): 303-306.    [31]  XU J G, ZHANG L, WANG Y K, et al. Unveiling the critical role of
            [15]  YANG J P, WANG Y X, CHOU S L, et al. Yolk-shell silicon-mesoporous   polymeric binders for silicon negative electrodes in lithium-ion full
   29   30   31   32   33   34   35   36   37   38   39