Page 34 - 《精细化工》2020年第11期
P. 34
·2180· 精细化工 FINE CHEMICALS 第 37 卷
如“千足虫”、“环滑轮”结构、“DNA 双链型”结 carbon anode with compact solid electrolyte interphase film for
构等,赋予粘结剂特殊性能,实现硅基锂离子电池 superior lithium-ion batteries[J]. Nano Energy, 2015, 18: 133-142.
[16] HE W J, ZHANG L F, LING M, et al. A self-transition strategy
的高电化学特性等。
toward nanostructured Cu-MoO 2/rGO composite as anodes for
总之,增强粘结剂与硅颗粒、导电剂以及集流 lithium-ion batteries with high initial coulombic efficiency and cycle
体之间的黏附性和机械稳定性,保持电极的完整性 stability[J]. Journal of The Electrochemical Society, 2018, 165(2):
不被破坏是未来硅基锂离子电池发展的重要方向。 A355-A360.
[17] BLOMGREN G E. The development and future of lithium ion
同时,高效性粘结剂也利于锂离子电池行业的绿色
batteries[J]. Journal of the Electrochemical Society, 2017, 164(1):
发展和可持续发展,可进一步扩大锂离子电池的应 A5019-A5025.
用范围。 [18] SHI Y, ZHOU X Y, YU G H. Material and structural design of novel
binder systems for high-energy, high-power lithium-ion batteries[J].
参考文献: Accounts of Chemical Research, 2017, 50(11): 2642-2652.
[19] NGUYEN C C, YOON T, SEO D M, et al. Systematic investigation
[1] ZHANG L, HU X L, CHEN C J, et al. In operando mechanism
analysis on nanocrystalline silicon anode material for reversible and of binders for silicon anodes: Interactions of binder with silicon
ultrafast sodium storage[J]. Advanced Materials, 2017, 29(5): 1604708. particles and electrolytes and effects of binders on solid electrolyte
[2] XIAO J, XU W, WANG D Y, et al. Stabilization of silicon anode for interphase formation[J]. ACS Applied Materials & Interfaces, 2016,
8(19): 12211-12220.
Li-ion batteries[J]. Journal of the Electrochemical Society, 2010,
157(10): 1047-1051. [20] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion
[3] ZHANG S C, DU Z J, LIN R X, et al. Nickel nanocone-array batteries with high energy densities[J]. Nature Reviews Materials,
supported silicon anode for high-performance lithium-ion batteries[J]. 2016, 1(4): 16013.
Advanced Materials, 2010, 22(47): 5378-5382. [21] GRILLET A M, HUMPLIK T, STIRRUP E K, et al. Conductivity
[4] ASHURI M, HE Q R, SHAW L L. Silicon as a potential anode degradation of polyvinylidene fluoride composite binder during
material for Li-ion batteries: Where size, geometry and structure cycling: Measurements and simulations for lithium-ion batteries[J].
matter[J]. Nanoscale, 2016, 8(1): 74-103. Journal of the Electrochemical Society, 2016, 163(9): A1859-A1871.
[5] LI X L, YAN P F, AREY B W, et al. A stable nanoporous silicon [22] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical,
anode prepared by modified magnesiothermic reactions[J]. Nano and electrical functionalities of binders for advanced energy-storage
Energy, 2016, 20: 68-75. devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982.
[6] WU J X, QIN X Y, ZHANG H R, et al. Multilayered silicon [23] LI J T, WU Z Y, LU Y Q, et al. Water soluble binder, an electrochemical
embedded porous carbon/graphene hybrid film as a high performance performance booster for electrode materials with high energy density[J].
anode[J]. Carbon, 2015, 84: 434-443. Advanced Energy Materials, 2017, 7(24): 1701185.
[7] LUO Z P, XIAO Q Z, LEI G T, et al. Si nanoparticles/graphene [24] GAO S L, SUN F Y, BRADY A, et al. Ultra-efficient polymer binder
composite membrane for high performance silicon anode in lithium for silicon anode in high-capacity lithium-ion batteries[J]. Nano
ion batteries[J]. Carbon, 2016, 98: 373-380. Energy, 2020, 73: 104804.
[8] SHEN C F, GE M Y, ZHANG A Y, et al. Silicon (lithiated)-sulfur full [25] SANTIMETANEEDOL A, TRIPURANENI R, CHESTER S A, et al.
cells with porous silicon anode shielded by Nafion against Time-dependent deformation behavior of polyvinylidene fluoride
polysulfides to achieve high capacity and energy density[J]. Nano binder: Implications on the mechanics of composite electrodes[J].
Energy, 2016, 19: 68-77. Journal of Power Sources, 2016, 332: 118-128.
[9] SHANG H, ZUO Z C, YU L, et al. Low-temperature growth of [26] RADIN M D, HY S, SINA M, et al. Narrowing the gap between
all-carbon graphdiyne on a silicon anode for high-performance theoretical and practical capacities in Li-ion layered oxide cathode
lithium-ion batteries[J]. Advanced Materials, 2018, 30(27): 1801459. materials[J]. Advanced Energy Materials, 2017, 7(20): 1602888.
[10] FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion [27] MAZOUZI D, KARKAR Z, HERNANDEZ C R, et al. Critical roles
batteries: From fundamentals to practical applications[J]. Small, of binders and formulation at multiscales of silicon-based composite
2018, 14(8): 1702737. electrodes[J]. Journal of Power Sources, 2015, 280: 533-549.
[11] ZHANG L, RAJAGOPALAN R, GUO H P, et al. A green and facile [28] LUO L, XU Y L, ZHANG H, et al. Comprehensive understanding of
way to prepare granadilla-like silicon-based anode materials for Li-ion high polar polyacrylonitrile as an effective binder for Li-ion battery
batteries[J]. Advanced Functional Materials, 2016, 26(3): 440-446. nano-Si anodes[J]. ACS Applied Materials & Interfaces, 2016, 8(12):
[12] YAO Y, MCDOWELL M T, RYU Ⅰ, et al. Interconnected silicon 8154-8161.
hollow nanospheres for lithium-ion battery anodes with long cycle [29] WEI L M, HOU Z Y. High performance polymer binders inspired by
life[J]. Nano Letters, 2011, 11(7): 2949-2954. chemical finishing of textiles for silicon anodes in lithium ion
[13] PENG H L, CHAN C K, MEISTER S, et al. Shape evolution of batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22156-
layer-structured bismuth oxychloride nanostructures via low-temperature 22162.
chemical vapor transport[J]. Chemistry of Materials, 2008, 21(2): [30] BIE Y T, YANG J, LIU X L, et al. Polydopamine wrapping silicon
247-252. cross-linked with polyacrylic acid as high-performance anode for
[14] OHARA S, SUZUKI J, SEKINE K, et al. A thin film silicon anode lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016,
for Li-ion batteries having a very large specific capacity and long 8(5): 2899-2904.
cycle life[J]. Journal of Power Sources, 2004, 136(2): 303-306. [31] XU J G, ZHANG L, WANG Y K, et al. Unveiling the critical role of
[15] YANG J P, WANG Y X, CHOU S L, et al. Yolk-shell silicon-mesoporous polymeric binders for silicon negative electrodes in lithium-ion full