Page 35 - 《精细化工》2020年第11期
P. 35

第 11 期                      杨纪元,等:  锂离子电池硅负极粘结材料的研究进展                                   ·2181·


                 cells[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3562-3569.     Journal of Materials Chemistry C, 2017, 5(38): 9865-9872.
            [32]  GENDENSUREN  B,  OH  E  S.  Dual-crosslinked  network  binder  of   [47]  YU L B, LIU J, HE S S, et al. A novel high-performance 3D polymer
                 alginate  with  polyacrylamide  for  silicon/graphite  anodes  of  lithium   binder for silicon anode in lithium-ion batteries[J]. Journal of Physics
                 ion battery[J]. Journal of Power Sources, 2018, 384: 379-386.     and Chemistry of Solids, 2019, 135: 109113.
            [33]  MAZOUZI D, GRISSA R, PARIS M, et al. CMC-citric acid Cu (Ⅱ)   [48]  WEI D F, MAO J, ZHENG Z N, et al. Achieving a high loading Si
                 cross-linked  binder  approach  to  improve  the  electrochemical   anode  via  employing  a  triblock  copolymer  elastomer  binder,  metal
                 performance  of  Si-based  electrodes[J].  Electrochimica  Acta,  2019,   nanowires  and  a  laminated  conductive  structure[J].  Journal  of
                 304: 495-504.                                     Materials Chemistry A, 2018, 6(42): 20982-20991.
            [34]  JEENA  M  T, LEE  J I,  KIM  S  H,  et al.  Multifunctional  molecular   [49]  FENG K, LI M, ZHENG Y N, et al. Micron-sized secondary Si/C
                 design as an efficient polymeric binder for silicon anodes in lithium-ion   composite with in situ crosslinked polymeric binder for high-energy-
                 batteries[J].  ACS  Applied  Materials  &  Interfaces,  2014,  6(20):   density lithium-ion battery anode[J]. Electrochimica Acta, 2019, 309:
                 18001-18007.                                      157-165.
            [35]  JUNG  C  H,  KIM  K  H,  HONG  S  H.  Stable  silicon  anode  for   [50]  LEE S H,  LEE  J  H, NAM  D H,  et al.  Epoxidized  natural  rubber/
                 lithium-ion batteries through covalent bond formation with a binder   chitosan network binder for silicon anode in lithium-ion battery[J].
                 via esterification[J]. ACS Applied Materials & Interfaces, 2019, 11(30):   ACS Applied Materials & Interfaces, 2018, 10(19): 16449-16457.
                 26753-26763.                                  [51]  URBANSKI A, OMAR A, GUO J, et al. An efficient two-polymer
            [36]  LIU Y J,  TAI  Z  X, ZHOU  T  F,  et al.  An  all-integrated  anode  via   binder  for  high-performance  silicon  nanoparticle-based  lithium-ion
                 interlinked  chemical  bonding  between  double-shelled-yolk-structured   batteries: A systematic case study with commercial polyacrylic acid
                 silicon  and  binder  for  lithium-ion  batteries[J].  Advanced  Materials,   and  polyvinyl  butyral  polymers[J].  Journal  of  The  Electrochemical
                 2017, 29(44): 1703028.                            Society, 2019, 166(3): A5275-A5286.
            [37]  LIM S, LEE K, SHIN I, et al. Physically cross-linked polymer binder   [52]  LIU T F, CHU Q L, YAN C, et al. Interweaving 3D network binder
                 based  on  poly  (acrylic  acid)  and  ion-conducting  poly  (ethylene   for  high-areal-capacity  Si  anode  through  combined  hard  and  soft
                 glycol-co-benzimidazole)  for  silicon  anodes[J].  Journal  of  Power   polymers[J]. Advanced Energy Materials, 2019, 9(3): 1802645.
                 Sources, 2017, 360: 585-592. .                [53]  HUANG  Q,  WAN  C,  LOVERIDGE  M,  et al.  Partially  neutralized
            [38]  LI J J, ZHANG G Z, YANG Y, et al. Glycinamide modified polyacrylic   polyacrylic acid/poly (vinyl alcohol) blends as effective binders for
                 acid  as  high-performance  binder  for  silicon  anodes  in  lithium-ion   high-performance  silicon  anodes  in  lithium-ion  batteries[J].  ACS
                 batteries[J]. Journal of Power Sources, 2018, 406: 102-109.     Applied Energy Materials, 2018, 1(12): 6890-6898.
            [39]  YAN  K,  GAO  X,  LUO  Y  W.  Well-defined  high  molecular  weight   [54]  ZHU X Y, ZHANG F, ZHANG L, et al. A highly stretchable cross-
                 polystyrene  with  high  rates  and  high  livingness  synthesized via   linked polyacrylamide hydrogel as an effective binder for silicon and
                 two-stage RAFT emulsion polymerization[J]. Macromolecular Rapid   sulfur  electrodes  toward  durable  lithium-ion  storage[J].  Advanced
                 Communications, 2015, 36(13): 1277-1282.          Functional Materials, 2018, 28(11): 1705015.
            [40]  CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on   [55]  CHEN  C, LEE  S H,  CHO  M,  et al.  Cross-linked  chitosan  as  an
                 the performance of silicon/graphite composite anodes for lithium ion   efficient  binder  for  Si  anode  of  Li-ion  batteries[J].  ACS  Applied
                 batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-   Materials & Interfaces, 2016, 8(4): 2658-2665.
                 3478.                                         [56]  XU  Z  X,  YANG  J,  ZHANG  T,  et al.  Silicon  microparticle  anodes
            [41]  YUCA N, ZHAO H, SONG X Y, et al. A systematic investigation of   with  self-healing  multiple  network  binder[J].  Joule,  2018,  2(5):
                 polymer binder flexibility on the electrode performance of lithium-ion   950-961.
                 batteries[J].  ACS  Applied  Materials  &  Interfaces,  2014,  6(19):   [57]  ZHANG G Z, YANG Y, CHEN Y H, et al. A quadruple-hydrogen-bonded
                 17111-17118.                                      supramolecular  binder  for  high-performance  silicon  anodes  in
            [42]  JEENA  M  T, BOK T,  KIM  S  H,  et al.  A  siloxane-incorporated   lithium-ion batteries[J]. Small, 2018, 14(29): 1801189.
                 copolymer as an in situ cross-linkable binder for high performance   [58]  KIM  S,  JEONG  Y  K,  WANG  Y,  et al.  A  “sticky”  mucin-inspired
                 silicon anodes in Li-ion batteries[J]. Nanoscale, 2016, 8(17): 9245-   DNA-polysaccharide binder for silicon and silicon-graphite blended
                 9253.                                             anodes in lithium-ion batteries[J]. Advanced Materials, 2018, 30(26):
            [43]  CHOI S J, YIM T, CHO W, et al. Rosin-embedded poly (acrylic acid)   1707594.
                 binder  for  silicon/graphite  negative  electrode[J].  ACS  Sustainable   [59]  JEONG Y K, KWON T, LEE I, et al. Millipede-inspired structural
                 Chemistry & Engineering, 2016, 4(12): 6362-6370.     design  principle  for  high  performance  polysaccharide  binders  in
            [44]  LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers   silicon  anodes[J].  Energy  &  Environmental  Science,  2015,  8(4):
                 as  a  versatile  binder  for  various  electrodes  of  high-performance   1224-1230.
                 lithium-ion batteries[J]. Small, 2016, 12(23): 3119-3127.     [60]  CHOI  S,  KWON  T,  COSKUN  A,  et al.  Highly  elastic  binders
            [45]  WEI L M, CHEN C X, HOU Z Y, et al. Poly (acrylic acid sodium)   integrating polyrotaxanes for silicon microparticle anodes in lithium
                 grafted  carboxymethyl  cellulose  as  a  high  performance  polymer   ion batteries[J]. Science, 2017, 357(6348): 279-283.
                 binder for silicon anode in lithium ion batteries[J]. Scientific Reports,   [61]  CHO Y,  KIM  J, ELABD A,  et al.  A  pyrene-poly  (acrylic  acid)-
                 2016, 6: 19583.                                   polyrotaxane  supramolecular  binder  network  for  high-performance
            [46]  XIE P L, YANG X X, LI T F, et al. Highly stretchable, transparent,   silicon  negative  electrodes[J].  Advanced  Materials,  2019,  31(51):
                 and  colorless  electrodes  from  a  diblock  copolymer  electrolyte[J].   1905048.
   30   31   32   33   34   35   36   37   38   39   40