Page 35 - 《精细化工》2020年第11期
P. 35
第 11 期 杨纪元,等: 锂离子电池硅负极粘结材料的研究进展 ·2181·
cells[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3562-3569. Journal of Materials Chemistry C, 2017, 5(38): 9865-9872.
[32] GENDENSUREN B, OH E S. Dual-crosslinked network binder of [47] YU L B, LIU J, HE S S, et al. A novel high-performance 3D polymer
alginate with polyacrylamide for silicon/graphite anodes of lithium binder for silicon anode in lithium-ion batteries[J]. Journal of Physics
ion battery[J]. Journal of Power Sources, 2018, 384: 379-386. and Chemistry of Solids, 2019, 135: 109113.
[33] MAZOUZI D, GRISSA R, PARIS M, et al. CMC-citric acid Cu (Ⅱ) [48] WEI D F, MAO J, ZHENG Z N, et al. Achieving a high loading Si
cross-linked binder approach to improve the electrochemical anode via employing a triblock copolymer elastomer binder, metal
performance of Si-based electrodes[J]. Electrochimica Acta, 2019, nanowires and a laminated conductive structure[J]. Journal of
304: 495-504. Materials Chemistry A, 2018, 6(42): 20982-20991.
[34] JEENA M T, LEE J I, KIM S H, et al. Multifunctional molecular [49] FENG K, LI M, ZHENG Y N, et al. Micron-sized secondary Si/C
design as an efficient polymeric binder for silicon anodes in lithium-ion composite with in situ crosslinked polymeric binder for high-energy-
batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(20): density lithium-ion battery anode[J]. Electrochimica Acta, 2019, 309:
18001-18007. 157-165.
[35] JUNG C H, KIM K H, HONG S H. Stable silicon anode for [50] LEE S H, LEE J H, NAM D H, et al. Epoxidized natural rubber/
lithium-ion batteries through covalent bond formation with a binder chitosan network binder for silicon anode in lithium-ion battery[J].
via esterification[J]. ACS Applied Materials & Interfaces, 2019, 11(30): ACS Applied Materials & Interfaces, 2018, 10(19): 16449-16457.
26753-26763. [51] URBANSKI A, OMAR A, GUO J, et al. An efficient two-polymer
[36] LIU Y J, TAI Z X, ZHOU T F, et al. An all-integrated anode via binder for high-performance silicon nanoparticle-based lithium-ion
interlinked chemical bonding between double-shelled-yolk-structured batteries: A systematic case study with commercial polyacrylic acid
silicon and binder for lithium-ion batteries[J]. Advanced Materials, and polyvinyl butyral polymers[J]. Journal of The Electrochemical
2017, 29(44): 1703028. Society, 2019, 166(3): A5275-A5286.
[37] LIM S, LEE K, SHIN I, et al. Physically cross-linked polymer binder [52] LIU T F, CHU Q L, YAN C, et al. Interweaving 3D network binder
based on poly (acrylic acid) and ion-conducting poly (ethylene for high-areal-capacity Si anode through combined hard and soft
glycol-co-benzimidazole) for silicon anodes[J]. Journal of Power polymers[J]. Advanced Energy Materials, 2019, 9(3): 1802645.
Sources, 2017, 360: 585-592. . [53] HUANG Q, WAN C, LOVERIDGE M, et al. Partially neutralized
[38] LI J J, ZHANG G Z, YANG Y, et al. Glycinamide modified polyacrylic polyacrylic acid/poly (vinyl alcohol) blends as effective binders for
acid as high-performance binder for silicon anodes in lithium-ion high-performance silicon anodes in lithium-ion batteries[J]. ACS
batteries[J]. Journal of Power Sources, 2018, 406: 102-109. Applied Energy Materials, 2018, 1(12): 6890-6898.
[39] YAN K, GAO X, LUO Y W. Well-defined high molecular weight [54] ZHU X Y, ZHANG F, ZHANG L, et al. A highly stretchable cross-
polystyrene with high rates and high livingness synthesized via linked polyacrylamide hydrogel as an effective binder for silicon and
two-stage RAFT emulsion polymerization[J]. Macromolecular Rapid sulfur electrodes toward durable lithium-ion storage[J]. Advanced
Communications, 2015, 36(13): 1277-1282. Functional Materials, 2018, 28(11): 1705015.
[40] CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on [55] CHEN C, LEE S H, CHO M, et al. Cross-linked chitosan as an
the performance of silicon/graphite composite anodes for lithium ion efficient binder for Si anode of Li-ion batteries[J]. ACS Applied
batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470- Materials & Interfaces, 2016, 8(4): 2658-2665.
3478. [56] XU Z X, YANG J, ZHANG T, et al. Silicon microparticle anodes
[41] YUCA N, ZHAO H, SONG X Y, et al. A systematic investigation of with self-healing multiple network binder[J]. Joule, 2018, 2(5):
polymer binder flexibility on the electrode performance of lithium-ion 950-961.
batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(19): [57] ZHANG G Z, YANG Y, CHEN Y H, et al. A quadruple-hydrogen-bonded
17111-17118. supramolecular binder for high-performance silicon anodes in
[42] JEENA M T, BOK T, KIM S H, et al. A siloxane-incorporated lithium-ion batteries[J]. Small, 2018, 14(29): 1801189.
copolymer as an in situ cross-linkable binder for high performance [58] KIM S, JEONG Y K, WANG Y, et al. A “sticky” mucin-inspired
silicon anodes in Li-ion batteries[J]. Nanoscale, 2016, 8(17): 9245- DNA-polysaccharide binder for silicon and silicon-graphite blended
9253. anodes in lithium-ion batteries[J]. Advanced Materials, 2018, 30(26):
[43] CHOI S J, YIM T, CHO W, et al. Rosin-embedded poly (acrylic acid) 1707594.
binder for silicon/graphite negative electrode[J]. ACS Sustainable [59] JEONG Y K, KWON T, LEE I, et al. Millipede-inspired structural
Chemistry & Engineering, 2016, 4(12): 6362-6370. design principle for high performance polysaccharide binders in
[44] LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers silicon anodes[J]. Energy & Environmental Science, 2015, 8(4):
as a versatile binder for various electrodes of high-performance 1224-1230.
lithium-ion batteries[J]. Small, 2016, 12(23): 3119-3127. [60] CHOI S, KWON T, COSKUN A, et al. Highly elastic binders
[45] WEI L M, CHEN C X, HOU Z Y, et al. Poly (acrylic acid sodium) integrating polyrotaxanes for silicon microparticle anodes in lithium
grafted carboxymethyl cellulose as a high performance polymer ion batteries[J]. Science, 2017, 357(6348): 279-283.
binder for silicon anode in lithium ion batteries[J]. Scientific Reports, [61] CHO Y, KIM J, ELABD A, et al. A pyrene-poly (acrylic acid)-
2016, 6: 19583. polyrotaxane supramolecular binder network for high-performance
[46] XIE P L, YANG X X, LI T F, et al. Highly stretchable, transparent, silicon negative electrodes[J]. Advanced Materials, 2019, 31(51):
and colorless electrodes from a diblock copolymer electrolyte[J]. 1905048.