Page 39 - 精细化工2020年第2期
P. 39
第 2 期 程春晖,等:甲醇制烃类反应机理研究进展 ·241·
acid[J]. Journal of Catalysis, 2006, 244(1): 65-77. [75] Mynsbrugge J V D, Visur M, Olsbye U, et al. Methylation of
[69] Mullen G M, Janik M J. Density functional theory study of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-beta
alkane-alkoxide hydride transfer in zeolites[J]. Acs Catalysis, 2015, zeolite catalysts[J]. Journal of Catalysis, 2012, 292: 201-212.
1(2): 105-115. [76] Mirth G, Lercher J A. Coadsorption of toluene and methanol on
[70] Teketel S, Skistad W, Benard S, et al. Shape selectivity in the HZSM-5 zeolites[J]. Journal of Physical Chemistry, 1991, 95(9):
conversion of methanol to hydrocarbons: the catalytic performance 3736-3740.
of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and [77] Svelle S, Visur M, Olsbye U, et al. Mechanistic aspects of the zeolite
EU-1[J]. ACS Catalysis, 2012, 2(1): 26–37. catalyzed methylation of alkenes and aromatics with methanol: A
[71] Joshi Y V, Thomson K T. Embedded cluster (QM/MM) investigation review[J]. Topics in Catalysis, 2011, 54(13/14/15): 897-906.
of C6 diene cyclization in HZSM-5[J]. Journal of Catalysis, 2005, [78] Zhang W, Chen J, Xu S, et al. Methanol to olefins reaction over
230(2): 440-463. cavity-type zeolite: Cavity controls the critical intermediates and
[72] Dass D V, Odell A L. Reactions of n-alkanes over H-ZSM-5: product selectivity[J]. ACS Catalysis, 2018, 8(12): 10950-10963.
Detection of reactive intermediates[J]. Journal of Catalysis, 1988, [79] Sullivan R F, Egan C J, Langlois G E, et al. A new reaction that
113(1): 259-262. occurs in the hydrocracking of certain aromatic hydrocarbons[J].
[73] Vandichel M , Lesthaeghe D , Mynsbrugge J V D, et al. Assembly of Journal of the American Chemical Society, 1961, 83(5): 1156-1160.
cyclic hydrocarbons from ethene and propene in acid zeolite catalysis [80] Sassi A, Wildman M A, Ahn H J, et al. Methylbenzene chemistry on
to produce active catalytic sites for MTO conversion[J]. Journal of zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J].
Catalysis, 2010, 271(1): 67-78. The Journal of Physical Chemistry B, 2002, 106(9): 2294-2303.
[74] Ilias S, Bhan A. Tuning the selectivity of methanol-to- hydrocarbons [81] Bjørgen M, Svelle S, Joensen F, et al. Conversion of methanol to
conversion on H-ZSM-5 by co-processing olefin or aromatic hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic
compounds[J]. Journal of Catalysis, 2012, 290: 186-192. species[J]. Journal of Catalysis, 2007, 249(2): 195-207.
(上接第 221 页) 1069-1075.
[62] Song X, Narzt M S, Nagelreiter I M, et al. Autophagy deficient
[53] Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and keratinocytes display increased DNA damage, senescence and aberrant
chronic disease[J]. Current Opinion in Immunology, 2014, 29: 23- lipid composition after oxidative stress in vitro and in vivo[J]. Redox
28. Biology, 2017, 11: 219-230.
[54] Magcwebeba T, Swart P, Swanevelder S, et al. Anti-inflammatory [63] Kang H T, Lee K B, Kim S Y, et al. Autophagy impairment induces
effects of aspalathuslinearis and cyclopia spp. Extracts in a UVB/ premature senescence in primary human fibroblasts[J]. Plos One,
Keratinocyte (HaCaT) model utilising interleukin-1α accumulation as 2011, 6(8): e23367.
biomarker[J]. Molecules, 2016, 21(10): 1323. [64] Rubinsztein D C, Mariño G, Kroemer G. Autophagy and aging[J].
[55] Yoshizaki N, Fujii T, Masaki H, et al. Orange peel extract, containing Cell, 2011, 146(5): 682-695.
high levels of polymethoxy flavonoid, suppressed UVB-induced [65] Li Y F, Ouyang S H, Tu L F, et al. Caffeine protects skin from
COX-2 expression and PGE2 production in HaCaT cells through oxidative stress-induced senescence through the activation of
PPAR-γ activation[J]. Experimental Dermatology, 2015, 23(S1): 18- autophagy[J]. Theranostics, 2018, 8(20): 5713-5730.
22. [66] Yoon S J, Lim C J, Chung H J, et al. Autophagy activation by
[56] Kim M, Lim S J, Kang S W , et al. Aceriphyllumrossii extract and its crepidiastrumdenticulatum extract attenuates environmental pollutant-
active compounds, quercetin and kaempferol inhibit IgE-mediated induced damage in dermal fibroblasts[J]. International Journal of
mast cell activation and passive cutaneous anaphylaxis[J]. Journal of Molecular Sciences, 2019, 20(3): 517.
Agricultural and Food Chemistry, 2014, 62(17): 3750-3758. [67] Zhou Y Y, Li Y, Jiang W Q, et al. MAPK/JNK signaling: A potential
[57] Suh S S, Hwang J, Park M, et al. Anti-inflammation activities of autophagy regulation pathway[J]. Bioscience Reports, 2015, 35(3):
mycosporine-like amino acids (MAAs) in response to UV radiation e00199.
suggest potential anti-skin aging activity[J]. Marine Drugs, 2014, [68] Xu H, She H, Zhu J, et al. Phosphorylation of LAMP2A by p38
12(10): 5174-5187. MAPK couples ER stress to chaperone-mediated autophagy[J].
[58] Myungsuk K, Sue Ji L, Hee-Ju L, et al. Cassia tora seed extract and Nature Communications, 2017, 8(1): 1763.
its active compound aurantio-obtusin inhibit allergic responses in [69] Xu X, Jiang R, Chen M, et al. Puerarin decreases collagen secretion
IgE-mediated mast cells and anaphylactic models[J]. Journal of in angII-induced atrial fibroblasts through inhibiting autophagy via
Agricultural & Food Chemistry, 2015, 63(41): 9037-9046. the JNK-Akt-mTOR signaling pathway[J]. Journal of Cardiovascular
[59] Nisticò S, Ehrlich J, Gliozzi M, et al. Telomere and telomerase Pharmacology, 2019, 73(6): 373-382.
modulation by bergamot polyphenolic fraction in experimental [70] Xuan H Z, Yuan W W, Chang H S, et al. Anti-inflammatory effects of
photoageing in human keratinocytes[J]. Journal of Biological Chinese propolis in lipopolysaccharide-stimulated human umbilical
Regulators and Homeostatic Agents, 2015, 29(3): 723-728. vein endothelial cells by suppressing autophagy and MAPK/NF-κB
[60] Bolfa P, Vidrighinescu R, Petruta A, et al. Photoprotective effects of signaling pathway[J]. Inflammopharmacology, 2019, 27(3): 561-571.
romanian propolis on skin of mice exposed to UVB irradiation[J]. [71] Duan W J, Li Y F, Liu F L, et al. A SIRT3/AMPK/autophagy network
Food and Chemical Toxicology, 2013, 62: 329-342. orchestrates the protective effects of trans-resveratrol in stressed
[61] Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights peritoneal macrophages and RAW 264.7 macrophages[J]. Free Radical
disease through cellular self-digestion[J]. Nature, 2008, 451(7182): Biology & Medicine, 2016, 95: 230-242.