Page 38 - 精细化工2020年第2期
P. 38

·240·                             精细化工   FINE CHEMICALS                                  第 37 卷

            [32]  Sun X, Mueller  S, Yue L,  et al. On reaction pathways in the   [51]  Svelle S, Olsbye U, Joensen F,  et al. Conversion of methanol to
                 conversion of methanol to hydrocarbons on HZSM-5[J]. Journal of   alkenes over medium-and large-pore acidic  zeolites: Steric
                 Catalysis, 2014, 317(8): 185-197.                 manipulation of the reaction intermediates governs the ethene/propene
            [33]  Olsbye U, Bjorgen M, Svelle S, et al. Mechanistic insight into the   product  selectivity[J]. The Journal  of  Physical Chemistry C, 2007,
                 methanol-to-hydrocarbons reaction[J]. Catalysis Today, 2005, 106(1):   111(49): 17981-17984.
                 108-111.                                      [52]  Wang S, Chen Y, Wei Z, et al. Polymethylbenzene or alkene cycle?
            [34]  Haw J F, Marcus D M. Well-defined (supra) molecular structures in   theoretical study on their contribution to the process of methanol to
                 zeolite  methanol-to-olefin catalysis[J]. Topics in Catalysis, 2005,   olefins over H-ZSM-5 zeolite[J]. The Journal of Physical Chemistry
                 34(1-4): 41-48.                                   C, 2015, 119(51): 28482-28498.
            [35]  Mole T, Bett G, Seddon D. Conversion of methanol to hydrocarbons   [53]  Wang S, Wei Z, Chen Y, et al. Methanol to olefins over H-MCM-22
                 over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons   zeolite: theoretical study on the catalytic roles of various pores[J].
                 using 13 carbon- and deuterium-labeled feeds[J]. Journal of Catalysis,   ACS Catalysis, 2015, 5(2):1131-1144.
                 1983, 84(2): 435-445.                         [54]  Wang N, Hou Y, Sun W, et al. Modulation of b-axis thickness within
            [36]  Langner B E. Reactions of methanol on zeolites with different pore   MFI zeolite: Correlation with variation of product diffusion and coke
                 structures[J]. Applied Catalysis, 1982, 2(4): 289-302.     distribution in the methanol-to-hydrocarbons conversion[J]. Applied
            [37]  Song W G, Haw J F, Nicholas J B,  et al. Methylbenzenes are the   Catalysis B: Environmental, 2019, 243:721-733..
                 organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J].   [55]  Teketel S, Svelle S, Lillerud K P, et al. Shape‐selective conversion
                 Journal of the American Chemical Society, 2000, 122(43): 10726-   of methanol to hydrocarbons over  10-ring unidirectional-channel
                 10727.                                            acidic H-ZSM-22[J]. ChemCatChem, 2009, 1(1): 78-81.
            [38]  Mikkelsen Ø, Rønning P O, Kolboe S. Use of isotopic labeling for   [56]  Stian S, Ola R P, Unni O, et al. Kinetic studies of zeolite-catalyzed
                                                                                                          12
                                                                                                12
                 mechanistic studies of the  methanol-to-hydrocarbons reaction.   methylation reactions. Part 2. Co-reaction of [ C]propene or [ C]
                                                                            13
                 Methylation of toluene with methanol over H-ZSM-5, H-mordenite   n-butene and [ C]methanol[J]. Journal of Catalysis, 2005, 234(2):
                 and H-beta[J]. Microporous & Mesoporous Materials, 2000, 40(1):   385-400.
                 95-113.                                       [57]  Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol
            [39]  Hereijgers B P C, Bleken F, Nilsen M H,  et al. Product shape   to hydrocarbons[J]. ACS Catalysis, 2012, 3(1): 18-31.
                 selectivity dominates the  methanol-to-olefins (MTO) reaction over   [58]  Svelle S, Tuma C, Rozanska X, et al. Quantum chemical modeling of
                 H-SAPO-34 catalysts[J]. Journal of Catalysis, 2009, 264(1): 77-87.     zeolite-catalyzed methylation  reactions: Toward chemical accuracy
            [40]  Svelle S, Olsbye U, Joensen F,  et al. Conversion of methanol to   for barriers[J]. Journal of the American Chemical Society, 2009,
                 alkenes over medium- and large-pore acidic zeolites:  Steric   131(2): 816-825.
                 manipulation  of  the  reaction  intermediates  governs  the  [59]  Yamazaki H, Shima H, Imai H, et al. Evidence for a “carbene-like”
                 ethene/propene product selectivity[J]. Journal of Physical Chemistry   intermediate during the reaction of  methoxy species with light
                 C, 2007, 111(49): 151-157.                        alkenes on H-ZSM-5[J]. Angewandte  Chemie, 2011, 50(8): 1853-
            [41]  Svelle S, Olsbye U, Lillerud K P, et al. Diphenylmethane-mediated   1856.
                 transmethylation of  methylbenzenes over H-zeolites[J]. Journal of   [60]  Dahl I M, Kolboe  S. On the reaction mechanism for hydrocarbon
                 the American Chemical Society, 2006, 128(17): 5618-5619.     formation from methanol over SAPO-34: 2. Isotopic labeling studies
            [42]  Bjørgen M, Svelle S, Joensen  F,  et al. Conversion  of methanol to   of the co-reaction of propene and methanol[J]. Journal of Catalysis,
                 hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic   1996, 161(1): 304-309.
                 species[J]. Journal of Catalysis, 2007, 249(2): 195-207.   [61]  Weitkamp J, Jacobs  P A, Martens J A. Isomerization and
            [43]  Sassi A, Wildman M A, Ahn H J, et al. Methylbenzene chemistry on   hydrocracking of C 9 through C 16 n-alkanes on Pt/HZSM-5 zeolite[J].
                 zeolite hbeta:  Multiple insights into methanol-to-olefin catalysis[J].   Applied Catalysis, 1983, 8(1): 123-141.
                 Journal of Physical Chemistry B, 2002, 106(9): 2294-2303.     [62]  Buchanan J S, Santiesteban J G, Haag W O. Mechanistic considerations
            [44]  Bjørgen M, Bonino F, Arstad B, et al. Persistent methylbenzenium   in acid-catalyzed cracking of olefins[J]. Journal of Catalysis, 1996,
                 ions in protonated zeolites: The required proton affinity of the guest   158(1): 279-287.
                 hydrocarbon[J]. ChemPhysChem, 2005, 6(2): 232-235.     [63]  Frash M V, Van Santen R A. Quantum-chemical  modeling  of the
            [45]  Ilias S, Bhan A. Tuning the selectivity of methanol-to- hydrocarbons   hydrocarbon transformations in acid zeolite catalysts[J]. Topics in
                 conversion on H-ZSM-5  by co-processing  olefin or aromatic   Catalysis, 1999, 9(3/4): 191-205.
                 compounds[J]. Journal of Catalysis, 2012, 290: 186-192.   [64]  Hay P J, Redondo A, Guo Y. Theoretical studies of pentene cracking
            [46]  Mccann D M, Lesthaeghe D, Kletnieks P W,  et al. A  complete   on zeolites: C—C  β-scission processes[J]. Catalysis today, 1999,
                 catalytic cycle for supramolecular methanol-to-olefins conversion by   50(3/4): 517-523.
                 linking theory with experiment[J]. Angewandte Chemie International   [65]  Boronat M, Viruela P, Corma A.  Theoretical study  of  bimolecular
                 Edition, 2008, 47(28): 5179-5182.                 reactions  between carbenium ions and paraffins:  the proposal of a
            [47]  Chen N Y, Reagan W J.  Evidence of autocatalysis in  methanol to   common intermediate for hydride transfer, disproportionation,
                 hydrocarbon reactions over zeolite catalysts[J]. Journal of catalysis,   dehydrogenation,  and alkylation[J]. J Phys  Chem  B,  1999,  103(37):
                 1979, 59(1): 123-129.                             7809-7821.
            [48]  Dessau R M. On the H-ZSM-5 catalyzed formation of ethylene from   [66]  Boronat M, Viruela P,  Corma A. Ab initio and density-functional
                 methanol or higher olefins[J]. Journal of Catalysis, 1986, 99(1):   theory study of zeolite-catalyzed hydrocarbon reactions: Hydride
                 111-116.                                          transfer, alkylation and disproportionation[J]. Physical Chemistry
            [49]  Dessau R M, Lapierre R  B. On the  mechanism of  methanol   Chemical Physics, 2000, 2(14): 3327-3333.
                 conversion to  hydrocarbons over HZSM-5[J]. Journal of  Catalysis,   [67]  Kazansky V B, Frash M V, Van Santen R A. Quantum-chemical
                 1982, 78(1): 136-141.                             study of hydride transfer in catalytic transformation of paraffins on
            [50]  Teketel S, Olsbye U, Lillerud K P, et al. Selectivity control through   zeolites[C]//International Zeolite Conference 11 (Seoul).1997:
                 fundamental  mechanistic insight  in  the conversion of methanol  to   2283-2290.
                 hydrocarbons over zeolites[J]. Microporous & Mesoporous Materials,   [68]  Janik M J, Davis R J, Neurock M. A density functional theory study
                 2010, 136(1): 33-41.                              of the alkylation  of isobutane with  butene over phosphotungstic
   33   34   35   36   37   38   39   40   41   42   43