Page 37 - 精细化工2020年第2期
P. 37
第 2 期 程春晖,等:甲醇制烃类反应机理研究进展 ·239·
关键问题仍然相当模糊。 of dimethyl ether to hydrocarbons on zeolite H-ZSM-5: The reaction
MTH 工艺的基础研究为催化剂的开发提供了 mechanism for formation of primary olefins[C]Proceedings of the
Fifth International Conference on Zeolites,1980.
有力支持。尽管已经提出了可靠的反应网络,但仍 [15] Munson E J, Kheir A A, Lazo N D, et al. In situ solid-state NMR
然有许多理论上的问题亟待解决,今后 MTH 反应 study of methanol-to-gasoline chemistry in zeolite HZSM-5[J]. The
Journal of Physical Chemistry, 1992, 96(19): 7740-7746.
机理的研究需要重点关注以下几个方面:(1)初始
[16] Lesthaeghe D, Van Speybroeck V, Marin G B, et al. The rise and fall
C—C 键形成的反应路径;(2)不同反应路径之间 of direct mechanisms in methanol-to-olefin catalysis: An overview of
的确切关系;(3)调控不同反应路径,以增加产品 theoretical contributions[J]. Industrial & Engineering Chemistry
Research, 2007, 46(26): 8832-8838.
的选择性,并减少积碳的生成;(4)利用分子动力 [17] Olsbye U, Svelle S, Lillerud K P, et al. The formation and
学(MD)模拟不同沸石骨架结构和复杂分子环境中 degradation of active species during methanol conversion over
protonated zeotype catalysts[J]. Chemical Society Reviews, 2015,
发生的化学反应。这些贡献有助于理解在 MTH 反
44(20): 7155-7176.
应中分子筛催化剂的构效关系,为催化剂的开发和 [18] Wang W, Hunger M. Reactivity of surface alkoxy species on acidic
催化性能的优化奠定基础。 zeolite catalysts[J]. Acc Chem Res, 2008, 39(48): 895-904.
[19] Sinclair P E, Catlow C R A. Generation of carbenes during methanol
参考文献: conversion over brönsted acidic aluminosilicates. A computational
study[J]. The Journal of Physical Chemistry B, 1997, 101(3): 295-298.
[1] Sun X, Mueller S, Shi H, et al. On the impact of co-feeding aromatics [20] Michael S. Methanol-to-hydrocarbons: Catalytic materials and their
and olefins for the methanol-to-olefins reaction on HZSM-5[J]. Journal behavior[J]. Microporous & Mesoporous Materials, 1999, 29(1/2):
of catalysis, 2014, 314: 21-31. 3-48.
[2] Hemelsoet K, Mynsbrugge J V D, Wispelaere K D, et al. Unraveling [21] Qian Zhen (钱震), Zhao Wenping (赵文平), Geng Yuxia (耿玉侠),
the reaction mechanisms governing methanol-to-olefins catalysis by et al. Advance in research on the mechanism of methanol conversion
theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545. to hydrocarbons [J]. Journal of Molecular Catalysis(China) (分子催
[3] Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to 化), 2015,29(6):593-600.
hydrocarbons: How zeolite cavity and pore size controls product [22] Lesthaeghe D, Van Der Mynsbrugge J, Vandichel M, et al. Full
selectivity[J]. Cheminform, 2012, 51(24): 5810-5831. theoretical cycle for both ethene and propene formation during
[4] Wu X, Xu S, Wei Y, et al. Evolution of C—C bond formation in the methanol-to-olefin conversion in H-ZSM-5 [J]. ChemCatChem,
methanol-to-olefins process: from direct coupling to autocatalysis[J]. 2011, 3(1): 208-212.
ACS Catalysis, 2018, 8(8): 7356-7361. [23] Lesthaeghe D, Van Speybroeck V, Marin G B, et al. Understanding
[5] Yu Xianbo (虞贤波), Liu Ye (刘烨), Yang Yongrong (阳永荣), et
the failure of direct C-C coupling in the zeolite-catalyzed methanol-
al. Mechanisms of methanol-to-olefin reaction [J]. Progress In
to-olefin process [J]. Angewandte Chemie, 2010, 45(11): 1714-1719.
Chemistry (化学进展), 2009, 21(9): 1757-1762.
[24] Liu Y, Müller S, Berger D, et al. Formation mechanism of the first
[6] Xu S, Zhi Y, Han J, et al. Advances in catalysis for methanol-to-olefins
carbon-carbon bond and the first olefin in the methanol conversion
conversion[M] Advances in Catalysis. Academic Press, 2017, 61:
into hydrocarbons[J]. Angewandte Chemie International Edition,
37-122.
2016, 55(19): 5723-5726.
[7] Lesthaeghe D, Van Speybroeck V, Marin G B, et al. Understanding
the failure of direct C—C coupling in the zeolite-catalyzed methanol- [25] Van Speybroeck V, Van der Mynsbrugge J, Vandichel M, et al. First
to-olefin process[J]. Angewandte Chemie International Edition, 2006, principle kinetic studies of zeolite-catalyzed methylation reactions[J].
45(11): 1714-1719. Journal of the American Chemical Society, 2010, 133(4): 888-899.
[8] Michael Stöcker. Methanol-to-hydrocarbons: Catalytic materials and [26] Lesthaeghe D, Van Speybroeck V, Marin G B, et al. What role do
their behavior[J]. Microporous and Mesoporous Materials, 1999, oxonium ions and oxonium ylides play in the ZSM-5 catalysed
29(1/2):3-48. methanol- to-olefin process?[J]. Chemical Physics Letters, 2006, 417(4):
[9] Jiang Y, Wang W, Marthala V R R, et al. Effect of organic impurities 309-315.
on the hydrocarbon formation via the decomposition of surface [27] Song W, Marcus D M, Hui F, et al. An oft-studied reaction that may
methoxy groups on acidic zeolite catalysts[J]. Journal of Catalysis, never have been: Direct catalytic conversion of methanol or
2006, 238(1): 21-27. dimethyl ether to hydrocarbons on the solid acids HZSM-5 or
[10] Dahl I M, Kolboe S. On the Reaction Mechanism for hydrocarbon HSAPO-34[J]. Journal of the American Chemical Society, 2002,
formation from methanol over SAPO-34: i. Isotopic labeling studies 124(15): 3844-3845.
of the co-reaction of ethene and methanol[J]. Journal of Catalysis, [28] Wu X, Xu S, Zhang W, et al. Direct mechanism of the first
1994, 149(2): 458-464. carbon-carbon bond formation in the methanol-to-hydrocarbons
process[J]. Angewandte Chemie International Edition, 2017, 56(31):
[11] Munson E J, Lazo N D, Moellenhoff M E, et al. Carbon monoxide is
9039-9043.
neither an intermediate nor a catalyst in MTG chemistry on zeolite
HZSM-5[J]. Journal of the American Chemical Society, 1991, [29] Shen Wenjie (申文杰). The direct mechanism for the formation of
113(7): 2783-2784. the first C—C bond in the methanol to hydrocarbon reaction [J].
[12] Grimsrud E P, Kebarle P. Gas phase ion equilibriums studies of the Wuli Huaxue Xuebao (物理化学学报), 2017, 33(11): 19-20.
hydrogen ion by methanol, dimethyl ether, and water. Effect of [30] Wang Youhe (王有和), Wu Chengcheng (吴成成), Liu Zhongwen
hydrogen bonding[J]. Journal of the American Chemical Society, (刘忠文), et al. Progresses in reaction processes,mechanism and
1973, 95(24): 7939-7943. kinetics of methanol to olefins [J]. Industrial Catalysis (工业催化),
[13] Hellring S D, Schmitt K D, Chang C D. Synthesis and decomposition 2018, 26(1): 13-21.
of trimethyloxonium ZSM-5, a purported intermediate in methanol [31] Teketel S, Olsbye U, Lillerud K P, et al. Selectivity control through
conversion into gasoline[J]. Journal of the Chemical Society Chemical fundamental mechanistic insight in the conversion of methanol to
Communications, 1987, 17(17): 1320-1322. hydrocarbons over zeolites[J]. Microporous & Mesoporous Materials,
[14] Van Den Berg J P, Wolthuizen J P, Van Hooff J H C. The conversion 2010, 136(1): 33-41.