Page 136 - 《精细化工》2020年第3期
P. 136

·554·                             精细化工   FINE CHEMICALS                                  第 37 卷

                                                    +
            [9]   CHAIKITTISILP  W,  DAVIS  M  E,  OKUBO  T.  TPA -mediated   [23]  LIU L,  LI X P,  XU  H,  et al.  Template  control  in  ionothermal
                 conversion of silicon wafer into preferentially-oriented MFI zeolite   synthesis  of  aluminophosphate  microporous  materials[J].  Dalton
                 film under steaming[J]. Chemistry of Materials, 2007, 19(17): 4120-   Transactions, 2009, (47): 10418-10421.
                 4122.                                         [24]  JHUNG S H, CHANG J S, HWANG J S, et al. Selective formation
            [10]  GAO B B, TIAN P, LI M R, et al. In situ growth and assembly of   of  SAPO-5  and  SAPO-34  molecular  sieves  with  microwave
                 microporous aluminophosphate nanosheets into ordered architectures   irradiation and hydrothermal heating[J]. Microporous and Mesoporous
                                                                   Materials, 2003, 64(1/2/3): 33-39.
                 at  low  temperature  and  their  enhanced  catalytic  performance[J].
                 Journal of Materials Chemistry A, 2015, 3(15): 7741-7749.   [25]  HWANG Y K, CHANG J S, PARK S E, et al. Microwave fabrication
                                                                   of  MFI  zeolite  crystals  with  a  fibrous  morphology  and  their
            [11]  SEO  Y,  LEE  S,  JO  C,  et al.  Microporous  aluminophosphate
                                                                   applications[J].  Angewandte  Chemie  International  Edition,  2005,
                 nanosheets  and  their  nanomorphic  zeolite  analogues  tailored  by   44(4): 556-560.
                 hierarchical  structure-directing  amines[J].  Journal  of  the  American   [26]  YANG W, SONG Y, MU Y, et al. Synthesis and crystal morphology
                 Chemical Society, 2013, 135(24): 8806-8809.       control  of  AlPO 4-5  molecular  sieves  by  microwave  irradiation[J].
            [12]  LI M, ZENG C F, ZHANG L X. Hydrothermal synthesis of SAPO-5   Solid State Sciences, 2014, 29: 41-47.
                 with novel morphologies from hydrogels containing acetic acid and   [27]  ZHAO X H, WANG H, KANG C X, et al. Ionothermal synthesis of
                 high  concentration  of  triethylamine  under  neutral  or  alkaline   mesoporous  SAPO-5  molecular  sieves  by  microwave  heating  and
                 conditions[J]. Cryst Eng Comm, 2012, 14(10): 3787-3792.   using  eutectic  solvent  as  structure-directing  agent[J].  Microporous
            [13]  COOPER  E  R,  ANDREWS  C  D,  WHEATLEY  P  S,  et al.  Ionic   and Mesoporous Materials, 2012, 151: 501-505.
                 liquids and eutectic mixtures as solvent and template in synthesis of   [28]  SOUSA L V, SILVA A  O S, SILVA B J B, et al. Fast synthesis of
                 zeolite analogues[J]. Nature, 2004, 430(7003): 1012-1016.   ZSM-22 zeolite by the seed-assisted method of crystallization with
            [14]  XU  Y  P,  TIAN  Z  J,  WANG  S  J,  et al.  Microwave-enhanced   methanol[J].  Microporous  and  Mesoporous  Materials,  2017,  254:
                 ionothermal  synthesis  of  aluminophosphate  molecular  sieves[J].   192-200.
                 Angewandte Chemie International Edition, 2006, 45(24): 3965-3970.   [29]  CORREGIDOR P F, ACOSTA D E, Destéfanis H A. Kinetic study of
            [15]  FENG  J,  WANG  J  F,  WANG  Z,  et al.  Ionothermal  synthesis  of   seed-assisted  crystallization  of  ZSM-5  zeolite  in  an  OSDA-free
                 hollow  aluminophosphate  molecular  sieves[J].  Particle  &  Particle   system using a natural aluminosilicate as starting source[J]. Industrial
                 Systems Characterization, 2018, 35(7): 1800125.   & Engineering Chemistry Research, 2018, 57(41): 13713-13720.
            [16]  ZHAO X H, WEN J J, ZHAO J B, et al. Hierarchically structured   [30]  SHEN K, WANG N, CHEN X D, et al. Seed-induced and additive-
                 SAPO-5  molecular  sieve  catalysts  with  tailored  mesoporosity  for   free  synthesis  of  oriented  nanorod-assembled  meso/macroporous
                 alkylation  reaction[J].  Journal  of  Porous  Materials,  2015,  22(3):   zeolites:  toward  efficient  and  cost-effective  catalysts  for  the MTA
                 577-584.                                          reaction[J].  Catalysis  Science  &  Technology,  2017,  7(21):  5143-
            [17]  WEN  Juanjuan  (问娟娟),  ZHAO  Xinhong  (赵新红),  ZHANG   5153.
                 Shuang  (张爽),  et al.  Morphology  control  of  SAPO-5  molecular   [31]  SUN  L  Y,  WANG  Y  Q,  CHEN  H  B,  et al.  Direct  synthesis  of
                 sieve[J]. Fine Chemicals (精细化工), 2017, 34(6):645-650, 661.   hierarchical ZnZSM-5 with addition of CTAB in a seeding method
            [18]  ZHAO  X  H,  WANG  H,  DONG  B  F,  et al.  Facile  synthesis  of   and  improved  catalytic  performance  in  methanol  to  aromatics
                 FeAlPO-5  molecular  sieve  in  eutectic  mixture  via  a  microwave-   reaction[J]. Catalysis Today, 2018, 316: 91-98.
                 assisted  process[J].  Microporous  and  Mesoporous  Materials,  2012,   [32]  SUN Q M, WANG N, BAI R S, et al. Seeding induced nano-sized
                 151: 56-63.                                       hierarchical SAPO-34 zeolites: cost-effective synthesis and superior
            [19]  UTCHARIYAJIT  K,  WONGKASEMJIT  S.  Effect  of  synthesis   MTO performance[J]. Journal of Materials Chemistry A, 2016, 4(39):
                 parameters  on  mesoporous  SAPO-5  with  AFI-type  formation  via   14978-14982.
                 microwave  radiation  using  alumatrane  and  silatrane  precursors[J].   [33]  ZHAO X H, ZHANG X X, HAO Z X, et al. Synthesis of FeAPO-5
                 Microporous and Mesoporous Materials, 2010, 135(1/2/3): 116-123.   molecular sieves with high iron contents via improved ionothermal
            [20]  WANG C, YANG M, TIAN P, et al. Dual template-directed synthesis   method and their catalytic performances in phenol hydroxylation[J].
                 of  SAPO-34  nanosheet  assemblies  with  improved  stability  in  the   Journal of Porous Materials, 2018, 25(4): 1007-1016.
                 methanol  to  olefins  reaction[J].  Journal  of  Materials  Chemistry A,   [34]  ZHAO X, ZHAO J, CHIANG C Y, et al. Highly efficient synthesis of
                 2015, 3(10): 5608-5616.                           LTA-type aluminophosphate molecular sieve by improved ionothermal
            [21]  ZHANG S C, WEN Z Y, YANG L, et al. Controllable synthesis of   method[J]. New Journal of Chemistry, 2016, 40(3): 2444-2450.
                 hierarchical  porous  petal-shaped  SAPO-34  zeolite  with  excellent   [35]  DANILINA N, KRUMEICH F, VAN BOKHOVEN J A. Hierarchical
                 DTO performance[J]. Microporous and Mesoporous Materials, 2019,   SAPO-5  catalysts  active  in  acid-catalyzed  reactions[J].  Journal of
                 274: 220-226.                                     Catalysis, 2010, 272(1): 37-43.
            [22]  CHEN  H  Y,  WANG  M  Y,  YANG  M  F,  et al.  Organosilane   [36]  KIM  J  C,  CHO  K,  RYOO  R.  High  catalytic  performance  of
                 surfactant-directed  synthesis  of  nanosheet-assembled  SAPO-34   surfactant-directed nanocrystalline zeolites for liquid-phase Friedel-
                 zeolites  with  improved  MTO  catalytic  performance[J].  Journal  of   Crafts  alkylation  of  benzene  due  to  external  surfaces[J].  Applied
                 Materials Science, 2019, 54(11): 8202-8215.       Catalysis A: General, 2014, 470: 420-426.
   131   132   133   134   135   136   137   138   139   140   141