Page 203 - 《精细化工》2020年第3期
P. 203
第 3 期 王学川,等: 超支化聚合物改性明胶胶粘剂的制备及性能 ·621·
从图 7a 可看出,纯明胶的接触角为 58.8°,加入 Biosynthesis and characterization of hydroxyapatite and its
composite (hydroxyapatite- gelatin-chitosan-fibrin-bone ash) for
EHPAE 和 SDS 后接触角分别为 65.7°和 74.2°,对比之 bone tissue engineering applications[J]. International Journal of
Biological Macromolecules, 2019, 129: 844-852.
后可以发现,制备得到的胶粘剂(88.2°)的水接触角 [10] ZHANG L, XUE J, ZHENG L J, et al. Pullulan dialdehyde
crosslinked gelatin hydrogels with high strength for biomedical
均大于市售胶粘剂(84.8°),即疏水性均优于市售胶。 applications[J]. Carbohydrate Polymers, 2019, 216: 45-53.
[11] İNAL M, MÜlazımoğlu G. Production and characterization of
从图 7b 可看出,EHPAE-Ⅲ改性胶粘剂的接触角最大, bactericidal wound dressing material based on gelatin nanofiber[J].
这是因为 EHPAE-Ⅲ的交联点多,可与明胶分子链上 International Journal of Biological Macromolecules, 2019, 137: 392-
404.
的亲水基团(如氨基、羟基等)形成多点交联,使得 [12] JAMRÓZ E, KULAWIK P, KRZYŚCIAK P, et al. Intelligent and
active furcellaran-gelatin films containing green or pu-erh tea
明胶分子链上的亲水基团减少,从而提高其疏水性。 extracts: Characterization, antioxidant and antimicrobial potential[J].
International Journal of Biological Macromolecules, 122: 745-757.
[13] BABAEI J, MOHAMMADIAN M, MADADLOU A. Gelatin as
3 结论 texture modifier and porogen in egg white hydrogel[J]. Food
Chemistry, 2019, 270: 189-195.
[14] RAMOS M, VALDES A, BELTRAN A, et al. Gelatin-based films
1
(1)通过使用 FTIR 和 HNMR 对超支化分子 and coatings for food packaging applications[J]. Reference Module
in Food Science, 2019, 6(4): 1-13.
的结构进行表征,结果表明,预期产物已成功合成。 [15] LIN L, GU Y L, CUI H Y, et al. Moringa oil/chitosan nanoparticles
embedded gelatin nanofibers for food packaging against Listeria
并且对其环氧值进行测定,发现其均有较好的性能, monocytogenes and Staphylococcus aureus on cheese[J]. Food
Packaging and Shelf Life, 2019, 19: 86-93.
进一步证明其产物合成成功。 [16] STEVENSON M, LONG J, GUERRERO P, et al. Development and
characterization of ribose-crosslinked gelatin products prepared by
(2)FTIR 分析表明:与纯明胶的 FTIR 谱图相 indirect 3D printing[J]. Food Hydrocolloids, 2019, 96: 65-71.
[17] MA Y L, QI P F, JU J P, et al. Gelatin/alginate composite nanofiber
比,改性后蛋白质酰胺带的特征吸收峰均发生红移, membranes for effective and even adsorption of cationic dyes[J].
Composites Part B: Engineering, 2019, 162: 671-677.
即可证明环氧基与氨基成功发生了交联反应。 [18] WU M, CHEN W J, MAO Q H, et al. Facile synthesis of chitosan/
(3)使用不同代数的 EHPAE 对明胶进行交联 gelatin filled with graphene bead adsorbent for orange II removal[J].
Chemical Engineering Research and Design, 2019, 144: 35-46.
改性制备得到的胶粘剂,对其进行应用实验后发现: [19] PRIYA, SHARMA A K, Kaith B S, et al. RSM-CCD optimized
sodium alginate/gelatin based ZnS-nanocomposite hydrogel for the
EHPAE-Ⅲ的综合性能最优,其固含量为 30.33%, effective removal of biebrich scarlet and crystal violet dyes[J].
International Journal of Biological Macromolecules, 2019, 129: 214-226.
且剪切强度为 2.216 MPa,T-剥离强度为 3.375 [20] POUR M M, SABERI-RISEH R, Mohammadinejad R, et al.
Investigating the formulation of alginate-gelatin encapsulated
N/mm,水接触角为 100.9°,而目前市售胶粘剂的固 pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling
含量为 22.84%,剪切强度为 1.868 MPa,T-剥离强 fusariumsolani on potato[J]. International Journal of Biological
Macromolecules, 2019, 133: 603-613.
度为 2.864 N/mm,水接触角为 84.8°,对比之后可 [21] HESS K M, SRUBAR W V. Activating relaxation-controlled diffusion
mechanisms for tailored moisture resistance of gelatin-based
发现:自制胶粘剂的固含量、剪切强度、T-剥离强 bioadhesives for engineered wood products[J]. Composites Part A:
Applied Science & Manufacturing, 2016, 84: 435-441.
度和疏水性均优于纯明胶和市售胶粘剂,应用性能 [22] DORR D N, FRAZIER S D, HESS K M, et al. Bond strength of
biodegradable gelatin-based wood adhesives[J]. Journal of Renewable
良好。同时,以从废皮屑中提取的明胶为生产原材 Materials, 2015, 3(3): 195-204.
[23] MEKONNEN T H, MUSSONE P G, CHOI P, et al. Development of
料,既赋予了废弃物新的附加价值,也有利于皮革 proteinaceous plywood adhesive and optimization of its lap shear
行业的绿色可持续性发展,为后续低成本、绿色无 strength[J]. Macromolecular Materials and Engineering, 2016,
300(2): 198-209.
毒型胶粘剂的开发提供一种新的探索方法和思路。 [24] WANG X C, CHEN K, LI W, et al. A paper sizing agent based on
leather collagen hydrolysates modified by glycol diglycidyl ether and
its compound performance[J]. International Journal of Biological
参考文献: Macromolecules, 2019, 124: 1205-1212.
[25] Standardization Administration of the People's Republic of China (中
[1] KONG Mingming (孔明明), LIU Hao (刘浩), WANG Yujie (王玉杰), et 国国家标准化管理委员会). GB/T 1677—2008, Determinating the
al. Research status and development trend of neoprene adhesives[J]. epoxy valueof plasticizers[S]. Beijing: Standards Press of China (中
China Adhesives (中国胶粘剂), 2017, 26(5): 56-58. 国标准出版社), 2009: 1-4.
[2] XU Ming (徐茗), FU Zhaohui (付朝晖), YU Wenlan (俞文兰). Survey [26] Standardization Administration of the People's Republic of China (中
of airborne toxic substances in certain shoemaking enterprises using 国国家标准化管理委员会 ). GB/T 7124 — 2008, Adhesives-
polyurethane adhesive[J]. China Journal of Industrial Medicine (中国 Determination of tensile lap-shear strength[S]. Beijing: Standards
工业医学杂志), 2013, 26(3): 215-216. Press of China (中国标准出版社), 2008: 1-5.
[3] ZHANG Jing (张静), JIN Yujuan (靳玉娟), WANG E’e (王娥娥). [27] Standardization Administration of the People's Republic of China (中
Study on modification of poly(hydroxybutyrate-co-hydroxyvalerate) 国国家标准化管理委员会). GB/T 532—2008, Rubber, vulcanized
with epoxy-terminated hyperbranched polyester[J]. China Plastics or thermoplastic-Determination of adhesion to textile fabric[S].
(中国塑料), 2016, 30(10): 42-49. Beijing: Standards Press of China (中国标准出版社), 2008: 1-7.
[4] SIMA Yangyang (司马阳阳), JIN Yujuan (靳玉娟), CHANG Xiyuan [28] Kou Dakai (寇大凯), Li Hongtao (李宏涛), Zhang Long (张龙).
(常西苑), et al. Study of modification of poly(propylene carbonate) Synthesis of hyperbranched poly(amine-ester)with terminative active
with amino-terminated hyperbranched polymer[J]. China Plastics (中 epoxy group[J]. New Chemical Materials (化工新型材料), 2010,
国塑料), 2017, 31(12): 66-72. 38(8): 58-61.
[5] FARIS A H, IBRAHIM M N M, RAHIM A A. Preparation and [29] VIDAL B D C, MELLO M L S. Collagen type I amide I band
characterization of green adhesives using modified tannin and infrared spectroscopy[J]. Micron, 2011, 42(3): 283-289.
hyperbranched poly(amine-ester)[J]. International Journal of [30] CHEN N, LIN Q, RAO J, et al. Water resistances and bonding
Adhesion & Adhsives, 2016, 71: 39-47. strengths of soy-based adhesives containing different carbohydrates
[6] ZHANG Y, ZHANG M, CHEN M S, et al. Preparation and [J]. Industrial Crops & Products, 2013, 50(10): 44-49.
characterization of a soy protein-based high-performance adhesive with [31] YE J, QIU T, WANG H, et al. Study of glycidyl ether as a new kind
a hyperbranched cross-linked structure[J]. Chemical Engineering of modifier for urea-formaldehyde wood adhesives[J]. Journal of
Journal, 2018, 354(8): 1032-1041. Applied Polymer Science, 2013, 128(6): 4086-4094.
[7] ZHANG H, BRÉLÍGIA P, ZHAO T, et al. Mussel-inspired [32] LIU F, LI S, HE J, et al. Study on application of waterborne polyurethane
hyperbranched poly (amino ester) polymer as strong wet tissue adhesive in shoemaking industry[J]. China Adhesives, 2017, 26(4):
adhesive[J]. Biomaterials, 2014, 35(2): 711-719. 32-36.
[8] KWAK H W, KIM J E, LEE K H. Green fabrication of antibacterial [33] Standardization Administration of the People's Republic of China (中
gelatin fiber for biomedical application[J]. Reactive and Functional 国国家标准化管理委员会). GB/T 19340—2014, Adhesives for
Polymers, 2019, 136: 86-94. footwear and case and bag[S]. Beijing: Standards Press of China (中
[9] SATHIYAVIMAL S, VASANTHARAJ S, OSCAR F L, et al. 国标准出版社), 2014: 1-15.