Page 203 - 《精细化工》2020年第3期
P. 203

第 3 期                     王学川,等:  超支化聚合物改性明胶胶粘剂的制备及性能                                    ·621·


                 从图 7a 可看出,纯明胶的接触角为 58.8°,加入                       Biosynthesis  and  characterization  of  hydroxyapatite  and  its
                                                                   composite  (hydroxyapatite-  gelatin-chitosan-fibrin-bone  ash)  for
            EHPAE 和 SDS 后接触角分别为 65.7°和 74.2°,对比之                   bone  tissue  engineering  applications[J].  International  Journal  of
                                                                   Biological Macromolecules, 2019, 129: 844-852.
            后可以发现,制备得到的胶粘剂(88.2°)的水接触角                         [10]  ZHANG  L,  XUE  J,  ZHENG  L  J,  et al.  Pullulan  dialdehyde
                                                                   crosslinked  gelatin  hydrogels  with  high  strength  for  biomedical
            均大于市售胶粘剂(84.8°),即疏水性均优于市售胶。                            applications[J]. Carbohydrate Polymers, 2019, 216: 45-53.
                                                               [11]  İNAL  M,  MÜlazımoğlu  G.  Production  and  characterization  of
            从图 7b 可看出,EHPAE-Ⅲ改性胶粘剂的接触角最大,                          bactericidal wound dressing material based on gelatin nanofiber[J].
            这是因为 EHPAE-Ⅲ的交联点多,可与明胶分子链上                             International Journal of Biological Macromolecules, 2019, 137: 392-
                                                                   404.
            的亲水基团(如氨基、羟基等)形成多点交联,使得                            [12]  JAMRÓZ  E,  KULAWIK  P,  KRZYŚCIAK  P,  et al.  Intelligent  and
                                                                   active  furcellaran-gelatin  films  containing  green  or  pu-erh  tea
            明胶分子链上的亲水基团减少,从而提高其疏水性。                                extracts:  Characterization,  antioxidant  and  antimicrobial  potential[J].
                                                                   International Journal of Biological Macromolecules, 122: 745-757.
                                                               [13]  BABAEI  J,  MOHAMMADIAN  M,  MADADLOU  A.  Gelatin  as
            3   结论                                                 texture  modifier  and  porogen  in  egg  white  hydrogel[J].  Food
                                                                   Chemistry, 2019, 270: 189-195.
                                                               [14]  RAMOS M,  VALDES A, BELTRAN  A,  et al.  Gelatin-based films
                                      1
                (1)通过使用 FTIR 和 HNMR 对超支化分子                         and coatings for food packaging applications[J]. Reference Module
                                                                   in Food Science, 2019, 6(4): 1-13.
            的结构进行表征,结果表明,预期产物已成功合成。                            [15]  LIN L, GU Y L, CUI H Y, et al. Moringa oil/chitosan nanoparticles
                                                                   embedded  gelatin  nanofibers  for  food  packaging  against  Listeria
            并且对其环氧值进行测定,发现其均有较好的性能,                                monocytogenes  and  Staphylococcus  aureus  on  cheese[J].  Food
                                                                   Packaging  and  Shelf  Life, 2019, 19: 86-93.
            进一步证明其产物合成成功。                                      [16]  STEVENSON  M,  LONG  J,  GUERRERO  P,  et al.  Development  and
                                                                   characterization  of  ribose-crosslinked  gelatin  products  prepared  by
                (2)FTIR 分析表明:与纯明胶的 FTIR 谱图相                        indirect 3D printing[J]. Food Hydrocolloids, 2019, 96: 65-71.
                                                               [17]  MA Y L, QI P F, JU J P, et al. Gelatin/alginate composite nanofiber
            比,改性后蛋白质酰胺带的特征吸收峰均发生红移,                                membranes  for  effective  and  even  adsorption  of  cationic  dyes[J].
                                                                   Composites Part B: Engineering, 2019, 162: 671-677.
            即可证明环氧基与氨基成功发生了交联反应。                               [18]  WU M, CHEN W J, MAO Q H, et al. Facile synthesis of chitosan/
                (3)使用不同代数的 EHPAE 对明胶进行交联                           gelatin filled with graphene bead adsorbent for orange II removal[J].
                                                                   Chemical Engineering Research and Design, 2019, 144: 35-46.
            改性制备得到的胶粘剂,对其进行应用实验后发现:                            [19]  PRIYA,  SHARMA A K,  Kaith B S,  et al.  RSM-CCD  optimized
                                                                   sodium  alginate/gelatin  based  ZnS-nanocomposite  hydrogel  for  the
            EHPAE-Ⅲ的综合性能最优,其固含量为 30.33%,                           effective  removal  of  biebrich  scarlet  and  crystal  violet  dyes[J].
                                                                   International Journal of Biological Macromolecules, 2019, 129: 214-226.
            且剪切强度为 2.216  MPa,T-剥离强度为 3.375                    [20]  POUR  M  M,  SABERI-RISEH  R,  Mohammadinejad  R,  et al.
                                                                   Investigating  the  formulation  of  alginate-gelatin  encapsulated
            N/mm,水接触角为 100.9°,而目前市售胶粘剂的固                           pseudomonas  fluorescens (VUPF5 and  T17-4 strains) for  controlling
            含量为 22.84%,剪切强度为 1.868  MPa,T-剥离强                      fusariumsolani  on  potato[J].  International  Journal  of  Biological
                                                                   Macromolecules, 2019, 133: 603-613.
            度为 2.864  N/mm,水接触角为 84.8°,对比之后可                   [21]  HESS K M, SRUBAR W V. Activating relaxation-controlled diffusion
                                                                   mechanisms  for  tailored  moisture  resistance  of  gelatin-based
            发现:自制胶粘剂的固含量、剪切强度、T-剥离强                                bioadhesives  for  engineered  wood  products[J].  Composites  Part  A:
                                                                   Applied Science & Manufacturing, 2016, 84: 435-441.
            度和疏水性均优于纯明胶和市售胶粘剂,应用性能                             [22]  DORR  D  N,  FRAZIER  S  D,  HESS  K  M,  et al.  Bond  strength  of
                                                                   biodegradable  gelatin-based  wood  adhesives[J].  Journal  of  Renewable
            良好。同时,以从废皮屑中提取的明胶为生产原材                                 Materials, 2015, 3(3): 195-204.
                                                               [23]  MEKONNEN T H, MUSSONE P G, CHOI P, et al. Development of
            料,既赋予了废弃物新的附加价值,也有利于皮革                                 proteinaceous  plywood  adhesive  and  optimization  of  its  lap  shear
            行业的绿色可持续性发展,为后续低成本、绿色无                                 strength[J].  Macromolecular  Materials  and  Engineering,  2016,
                                                                   300(2): 198-209.
            毒型胶粘剂的开发提供一种新的探索方法和思路。                             [24]  WANG X C, CHEN K, LI W, et al. A paper sizing agent based on
                                                                   leather collagen hydrolysates modified by glycol diglycidyl ether and
                                                                   its  compound  performance[J].  International  Journal  of  Biological
            参考文献:                                                  Macromolecules, 2019, 124: 1205-1212.
                                                               [25]  Standardization Administration of the People's Republic of China (中
            [1]   KONG Mingming (孔明明), LIU Hao (刘浩), WANG Yujie (王玉杰), et   国国家标准化管理委员会).  GB/T  1677—2008,  Determinating  the
                 al. Research status and development trend of neoprene adhesives[J].   epoxy valueof plasticizers[S]. Beijing: Standards Press of China (中
                 China Adhesives (中国胶粘剂), 2017, 26(5): 56-58.      国标准出版社), 2009: 1-4.
            [2]   XU Ming (徐茗), FU Zhaohui (付朝晖), YU Wenlan (俞文兰). Survey   [26]  Standardization Administration of the People's Republic of China (中
                 of airborne toxic substances in certain shoemaking enterprises using   国国家标准化管理委员会 ).  GB/T  7124 — 2008,  Adhesives-
                 polyurethane adhesive[J]. China Journal of Industrial Medicine (中国  Determination  of  tensile  lap-shear  strength[S].  Beijing:  Standards
                 工业医学杂志), 2013, 26(3): 215-216.                    Press of China (中国标准出版社), 2008: 1-5.
            [3]   ZHANG  Jing  (张静),  JIN  Yujuan  (靳玉娟),  WANG  E’e  (王娥娥).   [27]  Standardization Administration of the People's Republic of China (中
                 Study on modification of poly(hydroxybutyrate-co-hydroxyvalerate)   国国家标准化管理委员会).  GB/T  532—2008,  Rubber,  vulcanized
                 with  epoxy-terminated  hyperbranched  polyester[J].  China  Plastics   or  thermoplastic-Determination  of  adhesion  to  textile  fabric[S].
                 (中国塑料), 2016, 30(10): 42-49.                      Beijing: Standards Press of China (中国标准出版社), 2008: 1-7.
            [4]   SIMA Yangyang (司马阳阳), JIN Yujuan (靳玉娟), CHANG Xiyuan   [28]  Kou  Dakai  (寇大凯),  Li  Hongtao  (李宏涛),  Zhang  Long  (张龙).
                 (常西苑), et al. Study of modification of poly(propylene carbonate)   Synthesis of hyperbranched poly(amine-ester)with terminative active
                 with amino-terminated hyperbranched polymer[J]. China Plastics (中  epoxy  group[J].  New  Chemical  Materials  (化工新型材料),  2010,
                 国塑料), 2017, 31(12): 66-72.                        38(8): 58-61.
            [5]   FARIS  A  H,  IBRAHIM  M  N  M,  RAHIM  A  A.  Preparation  and   [29]  VIDAL  B  D  C,  MELLO  M  L  S.  Collagen  type  I  amide  I  band
                 characterization  of  green  adhesives  using  modified  tannin  and   infrared spectroscopy[J]. Micron, 2011, 42(3): 283-289.
                 hyperbranched  poly(amine-ester)[J].  International  Journal  of   [30]  CHEN  N,  LIN  Q,  RAO  J,  et al.  Water  resistances  and  bonding
                 Adhesion & Adhsives, 2016, 71: 39-47.             strengths of soy-based adhesives containing different carbohydrates
            [6]   ZHANG  Y,  ZHANG  M,  CHEN  M  S,  et al.  Preparation  and   [J]. Industrial Crops & Products, 2013, 50(10): 44-49.
                 characterization of a soy protein-based high-performance adhesive with   [31]  YE J, QIU T, WANG H, et al. Study of glycidyl ether as a new kind
                 a  hyperbranched  cross-linked  structure[J].  Chemical  Engineering   of  modifier  for  urea-formaldehyde  wood  adhesives[J].  Journal  of
                 Journal, 2018, 354(8): 1032-1041.                 Applied Polymer Science, 2013, 128(6): 4086-4094.
            [7]   ZHANG  H,  BRÉLÍGIA  P,  ZHAO  T,  et al.  Mussel-inspired   [32]  LIU F, LI S, HE J, et al. Study on application of waterborne polyurethane
                 hyperbranched  poly  (amino  ester)  polymer  as  strong  wet  tissue   adhesive in shoemaking industry[J]. China Adhesives, 2017, 26(4):
                 adhesive[J]. Biomaterials, 2014, 35(2): 711-719.   32-36.
            [8]   KWAK H W, KIM J E, LEE K H. Green fabrication of antibacterial   [33]  Standardization Administration of the People's Republic of China (中
                 gelatin fiber for biomedical application[J]. Reactive and Functional   国国家标准化管理委员会).  GB/T  19340—2014,  Adhesives  for
                 Polymers, 2019, 136: 86-94.                       footwear and case and bag[S]. Beijing: Standards Press of China (中
            [9]   SATHIYAVIMAL  S,  VASANTHARAJ  S,  OSCAR  F  L,  et al.   国标准出版社), 2014: 1-15.
   198   199   200   201   202   203   204   205   206   207   208