Page 75 - 《精细化工》2020年第4期
P. 75

第 4 期                       周   进,等: g-C 3 N 4 /CQDs 光催化材料的制备及性能                         ·709·


                 photocatalytic properties under visible-light irradiation[J]. Ceramics   [24]  VALERY  N  K,  JOHN  L  Z,  JOHN  L  M.  Powder  synthesis  and
                 International, 2018, 44(2): 1348-1355.            characterization of amorphous carbon nitride[J]. Chemistry of Materials,
            [16]  ZHOU Jinhui(周尽晖), DING Ling (丁玲), PENG Zeze (彭泽泽), et   2000, 12(11): 3264–3270.
                 al.  Characterization  and  properties  of  fluorescent  carbon  quantum   [25]  KOMATSU T, NAKAMURA T. Polycondensation/pyrolysis of tris-
                 dots  prepared  with  coke  powder  as  carbon  source  [J].  Journal  of   s-triazine derivatives leading to graphite-like carbon nitrides[J]. Journal
                 Wuhan University of Science and Technology(武汉科技大学学报),   of Materials Chemistry, 2001, 11(2): 474-478.
                 2017, 40(4): 269-272.                         [26]  NIU  P,  ZHANG  L  L,  LIU  G,  et al.  Graphene-like  carbon  nitride
            [17]  LIU Hongyan (刘红艳), FU Ming (傅敏), LI Hongmei (李红梅), et   nanosheets for improved photocatalytic activities[J]. Advanced Functional
                 al.  Preparation  of  g-C 3N 4  and  study  on  visible  light  photocatalytic   Materials, 2012, 22(22): 4763-4770.
                 properties[J].  Jorunal  of  Functional  Materials  (功能材料),  2015,   [27]  YANG  S,  GONG  Y,  ZHANG  J,  et al.  Exfoliated  graphitic  carbon
                 46( 22): 22022-22026.                             nitride nanosheets as efficient catalysts for hydrogen evolution under
            [18]  LIANG  Qianqian  (梁倩倩).  Preparation  and  photocatalytic  activity   visible light[J]. Advanced Materials, 2013, 25(17): 2452–2456.
                 of graphite-like carbon nitride (g-C 3N 4) and its magnetic composites[D].   [28]  LI K, SU F Y, ZHANG W D. Modification of g-C 3N 4 nanosheets by
                 Nanjing: Nanjing University of Science and Technology, 2017.   carbon quantum dots for highly efficient photocatalytic generation of
            [19]  ZHANG Qiong (张琼), DING Guangyue(丁光月),WANG Yawen(王  hydrogen[J]. Applied Surface Science, 2016, 375(13): 110-117.
                 雅文), et al. Preparation and photocatalytic activity of wide spectrum   [29]  SING  K  S  W.  Reporting  physisorption  data  for  gas/solid  systems
                 response  CQDs/TiO 2  composites  [J].  Journal  of  Synthetic  Crystals   with  special  reference  to  the  determination  of  surface  area  and
                 (人工晶体学报) , 2018, 47(6): 1113-1117.                porosity (Provisional)[J]. Pure and applied chemistry, 1982, 54(11):
            [20]  CAO J, XU B Y, LIN H L, et al. Novel heterostructured Bi 2S 3/BiOI   2201-2218.
                 photocatalyst:  facile  preparation  and  visible  light  photocatalytic   [30]  CAO S W, HUANG Q, ZHU B C, et al. Trace-level phosphorus and
                 performance [J]. Dalton Transactions, 2012, 4(6): 11482-11490.   sodium  co-doping  of  g-C 3N 4  for  enhanced  photocatalytic  H 2
            [21]  MA  J  Q,  YANG  Q  F,  WEN  Y  Z,  et al.  Fe-g-C 3N 4/graphitized   production[J]. Journal of Power Sources, 2017, 351(31): 151-159.
                 mesoporous carbon composite as an effective fenton-like catalyst in a   [31]  ZHANG Y, TANG Z R, FU X, et al. TiO 2-graphene nanocomposites
                 wide pH range[J]. Applied Catalysis B: Environmental, 2017, 201(3):   for  gas-phase  photocatalytic  degradation  of  volatile  aromatic
                 232-240.                                          pollutant:  is  TiO 2-graphene  truly  different  from  other  TiO 2-carbon
            [22]  XIE Y,  PENG S  H,  FENG Y,  et al.  Enhanced  mineralization  of   composite materials?[J]. ACS Nano, 2010, 4(12):7303-7314.
                 oxalate by highly active and stable Ce(III)-Doped g-C 3N 4 catalyzed   [32]  LI Songlin (李松林), ZHOU Yaping (周亚平), LIU Junji (刘俊吉).
                 ozonation[J]. Chemosphere, 2020, 239(3): 124612.   Physical chemistry[M]. Beijing: Higher Education Press (高等教育
            [23]  LI Jing (李靖),WU Haibo (吴海波),ZHANG Guangjun (张广君), et   出版社), 2009: 508-523.
                 al. Preparation of surface-supported g-C 3N 4/TiO 2 composite catalyst   [33]  CUI  Yuming  (崔玉民).  Synthesis  and  application  of  carbon  nitride
                 and its photocatalytic activity for reduction of Cr(VI) [J]. Journal of   photocatalytic  materials[M].  Beijing:  China  Book  Publishing  Press
                 Inner Mongolia University (内蒙古大学学报), 2018, 49(1): 36-43   (中国书籍出版社), 2018: 6-45.


            (上接第 695 页)                                        [12]  ALI  Z,  TIAN  L,  ZHANG  B,  et al.  Synthesis  of  fibrous  and
                                                                   non-fibrous mesoporous silica magnetic yolk–shell microspheres as a
            [3]   CHENG  Xianwei  ( 程宪伟 ).  Research  progress  on  antibiotic   recyclable  supports  for  immobilization  of  candida  rugosa  lipase[J].
                 pollution  and  treatment  technology  in  water[J].  Environmental   Enzyme & Microbial Technology, 2017, 103: 42-52.
                 Science & Technology 2017, 40(S1): 125-132.   [13]  FU Yanfang (傅燕芳). The dissolution of erythromycin tablets was
            [4]   QIN  Q,  XIAN  W,  CHEN  L,  et al.  Simultaneous  removal  of   determined  by  colorimetry  and  spectrophotometry  [J].  Journal  of
                 tetracycline  and  Cu( Ⅱ )  by  adsorption  and  coadsorption  using   China Pharmaceutical University (中国药科大学学报), 1994, 23(1):
                 oxidized activated carbon[J]. Rsc Advances, 2018, 8 (4): 1744-1752.   18-19.
            [5]   JIN  H  M,  CAI  X  U,  HUANG  H  Y,  et al.The  degradation  and   [14]  LAI  L,  HUANG  G,  WANG  X,  et al.  Solvothermal  syntheses  of
                 adsorption  of  sulfonamides  in  mesophilic  anaerobic  digestion  of   hollow carbon microspheres modified with —NH 2 and —OH groups
                 swine manure[J]. Journal of Agro-Environment Science, 2017, 36(9):   in one-step process[J]. Carbon, 2010, 48(11): 3145-3156.
                 1884-1892.                                    [15]  LEE S Y, KIM D H, CHOI S C, et al. Porous multi-walled carbon
            [6]   WANG Chao (王超), YAO Shumei (姚淑美), PENG Yeping (彭叶  nanotubes by using catalytic oxidation via transition metal oxide[J].
                 平), et al. Research progresses on treatment of antibiotics wastewater   Microporous & Mesoporous Materials, 2014, 194: 46-51.
                 by advanced oxidation process[J]. Chemical Environmental Protection   [16]  GAO  J,  RAN  X,  SHI  C,  et al.  One-step  solvothermal  synthesis  of
                 (化工环保), 2018, 38(2): 10-15.
            [7]   YANG Junjie (杨俊杰). Study on treatment methods of antibiotic water   highly water-soluble, negatively charged superpara- magnetic Fe 3O 4
                 pollution[J]. Chemical Management (化工管理), 2018, (33): 161-162.   colloidal nanocrystal clusters[J]. Nanoscale , 2013, 5 (15): 7026-7033.
            [8]   XIE Huanling (谢焕玲), TANG Chuan (唐川), LONG Jun (龙俊), et   [17]  OU Hongxiang (欧红香), ZHANG Jialu (张嘉陆), YU Peilin (余沛
                 al.  Preparation  for  magnetic  mesoporous  composites  and  study  on   霖),  et al.  Study  on  the  optimized  preparation  and  adsorption  of
                 performance  of  degradation  for  methylene  blue[J].  Journal  of   erythromycin  by  empty  silica  spheres[J].  Journal  of  Changzhou
                 Changzhou University (Natural Science Edition) (常州大学学报:  自  University (Natural Science Edition) (常州大学学报:自然科学版),
                 然科学版), 2018, 30(1): 43-49.                        2019, 31(1): 5-11.
            [9]   LI  C,  LU  J,  LI  S,  et al.  Synthesis  of  magnetic  microspheres  with   [18]  WANG Tao (汪涛), LIU Zhenzhong (刘振中), ZHAN Jian (詹健),
                 sodium  alginate  and  activated  carbon  for  removal  of  methylene   et al.  Adsorption  of  low  concentration  erythromycin  by  carbon
                 blue[J]. Materials (Basel), 2017, 10(1): 84.      nanotubes in water[J]. Journal of Safety and Environment (安全与环
            [10]  SUN X, YANG L, DONG T, et al. Removal of Cr(Ⅵ) from aqueous   境学报), 2016, 16(3): 227-231.
                 solution  using  amino-modified  Fe 3O 4-SiO 2-chitosan  magnetic   [19]  SONG Yinghua (宋应华), ZHU Jiawen (朱家文), CHEN Kui (陈葵),
                 microspheres  with  high  acid  resistance  and  adsorption  capacity[J].   et al. Purification of erythromycin by macroporous resin [J]. Chinese
                 Journal of Applied Polymer Science, 2016, 133(10): 1-11.   Journal of Antibiotics (中国抗生素杂志), 2007, 32 (5): 284-286.
            [11]  WANG Yixuan (王懿萱), ZHANG Di (张娣), NIU Hongyun (牛红云),   [20]  LI Shaoxiu (李绍秀), YANG Yang (杨阳), ZHANG Zhiqiang (张志
                 et al. Synthesis of core/shell structured magnetic carbon nanoparticles   强),  et al.  Removal  of  erythromycin  by  MWCNTs  decorated  with
                 and its adsorption ability to chlortetracycline in aquatic environment[J].   iron  oxide  from  aqueous  solution[J].  Environmental  Science  and
                 Environmental Science (环境科学), 2012, 33(4): 1234-1240.   Technology (环境科学与技术), 2017, 40(9): 124-130.
   70   71   72   73   74   75   76   77   78   79   80