Page 75 - 《精细化工》2020年第4期
P. 75
第 4 期 周 进,等: g-C 3 N 4 /CQDs 光催化材料的制备及性能 ·709·
photocatalytic properties under visible-light irradiation[J]. Ceramics [24] VALERY N K, JOHN L Z, JOHN L M. Powder synthesis and
International, 2018, 44(2): 1348-1355. characterization of amorphous carbon nitride[J]. Chemistry of Materials,
[16] ZHOU Jinhui(周尽晖), DING Ling (丁玲), PENG Zeze (彭泽泽), et 2000, 12(11): 3264–3270.
al. Characterization and properties of fluorescent carbon quantum [25] KOMATSU T, NAKAMURA T. Polycondensation/pyrolysis of tris-
dots prepared with coke powder as carbon source [J]. Journal of s-triazine derivatives leading to graphite-like carbon nitrides[J]. Journal
Wuhan University of Science and Technology(武汉科技大学学报), of Materials Chemistry, 2001, 11(2): 474-478.
2017, 40(4): 269-272. [26] NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride
[17] LIU Hongyan (刘红艳), FU Ming (傅敏), LI Hongmei (李红梅), et nanosheets for improved photocatalytic activities[J]. Advanced Functional
al. Preparation of g-C 3N 4 and study on visible light photocatalytic Materials, 2012, 22(22): 4763-4770.
properties[J]. Jorunal of Functional Materials (功能材料), 2015, [27] YANG S, GONG Y, ZHANG J, et al. Exfoliated graphitic carbon
46( 22): 22022-22026. nitride nanosheets as efficient catalysts for hydrogen evolution under
[18] LIANG Qianqian (梁倩倩). Preparation and photocatalytic activity visible light[J]. Advanced Materials, 2013, 25(17): 2452–2456.
of graphite-like carbon nitride (g-C 3N 4) and its magnetic composites[D]. [28] LI K, SU F Y, ZHANG W D. Modification of g-C 3N 4 nanosheets by
Nanjing: Nanjing University of Science and Technology, 2017. carbon quantum dots for highly efficient photocatalytic generation of
[19] ZHANG Qiong (张琼), DING Guangyue(丁光月),WANG Yawen(王 hydrogen[J]. Applied Surface Science, 2016, 375(13): 110-117.
雅文), et al. Preparation and photocatalytic activity of wide spectrum [29] SING K S W. Reporting physisorption data for gas/solid systems
response CQDs/TiO 2 composites [J]. Journal of Synthetic Crystals with special reference to the determination of surface area and
(人工晶体学报) , 2018, 47(6): 1113-1117. porosity (Provisional)[J]. Pure and applied chemistry, 1982, 54(11):
[20] CAO J, XU B Y, LIN H L, et al. Novel heterostructured Bi 2S 3/BiOI 2201-2218.
photocatalyst: facile preparation and visible light photocatalytic [30] CAO S W, HUANG Q, ZHU B C, et al. Trace-level phosphorus and
performance [J]. Dalton Transactions, 2012, 4(6): 11482-11490. sodium co-doping of g-C 3N 4 for enhanced photocatalytic H 2
[21] MA J Q, YANG Q F, WEN Y Z, et al. Fe-g-C 3N 4/graphitized production[J]. Journal of Power Sources, 2017, 351(31): 151-159.
mesoporous carbon composite as an effective fenton-like catalyst in a [31] ZHANG Y, TANG Z R, FU X, et al. TiO 2-graphene nanocomposites
wide pH range[J]. Applied Catalysis B: Environmental, 2017, 201(3): for gas-phase photocatalytic degradation of volatile aromatic
232-240. pollutant: is TiO 2-graphene truly different from other TiO 2-carbon
[22] XIE Y, PENG S H, FENG Y, et al. Enhanced mineralization of composite materials?[J]. ACS Nano, 2010, 4(12):7303-7314.
oxalate by highly active and stable Ce(III)-Doped g-C 3N 4 catalyzed [32] LI Songlin (李松林), ZHOU Yaping (周亚平), LIU Junji (刘俊吉).
ozonation[J]. Chemosphere, 2020, 239(3): 124612. Physical chemistry[M]. Beijing: Higher Education Press (高等教育
[23] LI Jing (李靖),WU Haibo (吴海波),ZHANG Guangjun (张广君), et 出版社), 2009: 508-523.
al. Preparation of surface-supported g-C 3N 4/TiO 2 composite catalyst [33] CUI Yuming (崔玉民). Synthesis and application of carbon nitride
and its photocatalytic activity for reduction of Cr(VI) [J]. Journal of photocatalytic materials[M]. Beijing: China Book Publishing Press
Inner Mongolia University (内蒙古大学学报), 2018, 49(1): 36-43 (中国书籍出版社), 2018: 6-45.
(上接第 695 页) [12] ALI Z, TIAN L, ZHANG B, et al. Synthesis of fibrous and
non-fibrous mesoporous silica magnetic yolk–shell microspheres as a
[3] CHENG Xianwei ( 程宪伟 ). Research progress on antibiotic recyclable supports for immobilization of candida rugosa lipase[J].
pollution and treatment technology in water[J]. Environmental Enzyme & Microbial Technology, 2017, 103: 42-52.
Science & Technology 2017, 40(S1): 125-132. [13] FU Yanfang (傅燕芳). The dissolution of erythromycin tablets was
[4] QIN Q, XIAN W, CHEN L, et al. Simultaneous removal of determined by colorimetry and spectrophotometry [J]. Journal of
tetracycline and Cu( Ⅱ ) by adsorption and coadsorption using China Pharmaceutical University (中国药科大学学报), 1994, 23(1):
oxidized activated carbon[J]. Rsc Advances, 2018, 8 (4): 1744-1752. 18-19.
[5] JIN H M, CAI X U, HUANG H Y, et al.The degradation and [14] LAI L, HUANG G, WANG X, et al. Solvothermal syntheses of
adsorption of sulfonamides in mesophilic anaerobic digestion of hollow carbon microspheres modified with —NH 2 and —OH groups
swine manure[J]. Journal of Agro-Environment Science, 2017, 36(9): in one-step process[J]. Carbon, 2010, 48(11): 3145-3156.
1884-1892. [15] LEE S Y, KIM D H, CHOI S C, et al. Porous multi-walled carbon
[6] WANG Chao (王超), YAO Shumei (姚淑美), PENG Yeping (彭叶 nanotubes by using catalytic oxidation via transition metal oxide[J].
平), et al. Research progresses on treatment of antibiotics wastewater Microporous & Mesoporous Materials, 2014, 194: 46-51.
by advanced oxidation process[J]. Chemical Environmental Protection [16] GAO J, RAN X, SHI C, et al. One-step solvothermal synthesis of
(化工环保), 2018, 38(2): 10-15.
[7] YANG Junjie (杨俊杰). Study on treatment methods of antibiotic water highly water-soluble, negatively charged superpara- magnetic Fe 3O 4
pollution[J]. Chemical Management (化工管理), 2018, (33): 161-162. colloidal nanocrystal clusters[J]. Nanoscale , 2013, 5 (15): 7026-7033.
[8] XIE Huanling (谢焕玲), TANG Chuan (唐川), LONG Jun (龙俊), et [17] OU Hongxiang (欧红香), ZHANG Jialu (张嘉陆), YU Peilin (余沛
al. Preparation for magnetic mesoporous composites and study on 霖), et al. Study on the optimized preparation and adsorption of
performance of degradation for methylene blue[J]. Journal of erythromycin by empty silica spheres[J]. Journal of Changzhou
Changzhou University (Natural Science Edition) (常州大学学报: 自 University (Natural Science Edition) (常州大学学报:自然科学版),
然科学版), 2018, 30(1): 43-49. 2019, 31(1): 5-11.
[9] LI C, LU J, LI S, et al. Synthesis of magnetic microspheres with [18] WANG Tao (汪涛), LIU Zhenzhong (刘振中), ZHAN Jian (詹健),
sodium alginate and activated carbon for removal of methylene et al. Adsorption of low concentration erythromycin by carbon
blue[J]. Materials (Basel), 2017, 10(1): 84. nanotubes in water[J]. Journal of Safety and Environment (安全与环
[10] SUN X, YANG L, DONG T, et al. Removal of Cr(Ⅵ) from aqueous 境学报), 2016, 16(3): 227-231.
solution using amino-modified Fe 3O 4-SiO 2-chitosan magnetic [19] SONG Yinghua (宋应华), ZHU Jiawen (朱家文), CHEN Kui (陈葵),
microspheres with high acid resistance and adsorption capacity[J]. et al. Purification of erythromycin by macroporous resin [J]. Chinese
Journal of Applied Polymer Science, 2016, 133(10): 1-11. Journal of Antibiotics (中国抗生素杂志), 2007, 32 (5): 284-286.
[11] WANG Yixuan (王懿萱), ZHANG Di (张娣), NIU Hongyun (牛红云), [20] LI Shaoxiu (李绍秀), YANG Yang (杨阳), ZHANG Zhiqiang (张志
et al. Synthesis of core/shell structured magnetic carbon nanoparticles 强), et al. Removal of erythromycin by MWCNTs decorated with
and its adsorption ability to chlortetracycline in aquatic environment[J]. iron oxide from aqueous solution[J]. Environmental Science and
Environmental Science (环境科学), 2012, 33(4): 1234-1240. Technology (环境科学与技术), 2017, 40(9): 124-130.