Page 104 - 《精细化工》2020年第6期
P. 104

·1170·                            精细化工   FINE CHEMICALS                                 第 37 卷

            [7]   XIONG  C  R,  BALKUS  K  J.  Mesoporous  molecular  sieve  derived   complexes[J]. Comments on Inorganic Chemistry, 1997, 19(2): 67-92.
                 TiO 2 nanofibers doped with SnO 2[J]. Journal of Physical Chemistry   [20]  POUDYAL S, LAURSEN S. Photocatalytic CO 2 reduction by H 2O:
                 C, 2007, 111(28): 10359-10367.                    insights  from  modeling  electronically  relaxed  mechanisms[J].
            [8]   LLABRESIXAMENA  F  X,  CORMA  A,  GARCIA  H.  Applications   Catalysis Science & Technology, 2019, 9(4): 1048-1059.
                 for metal-organic frameworks (MOFs) as quantum dot semiconductors[J].   [21]  TAN H (谈恒), XIAO S (肖洒), YAO S R (姚淑荣), et al. Visible
                 Journal of Physical Chemistry C, 2007, 111(1): 80-85.   light driven reduction of CO 2 to methanol over CuO/TiO 2 nanofibers[J].
            [9]   WANG  D  K,  HUANG  R  K,  LIU  W  J,  et al.  Fe-based  MOFs  for   Fine Chemicals (精细化工), 2019, 36(6): 1210-1216.
                 photocatalytic CO 2 reduction: role of coordination unsaturated sites   [22]  HATTORI H. Antireflection surface with particle coating deposited
                 and dual excitation pathways[J]. Acs Catalysis, 2014, 4(12): 4254-4260.   by electrostatic attraction[J]. Advanced Materials, 2001, 13(1): 51-54.
                                                               [23]  CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium
            [10]  SUN D R, FU Y H, LIU W J, et al. Studies on photocatalytic CO 2
                 reduction over NH 2-UiO-66(Zr) and its derivatives: towards a better   inorganic  building  brick  forming  metal  organic  frameworks  with
                 understanding  of  photocatalysis  on  metal-organic  frameworks[J].   exceptional  stability[J].  Journal  of  the  American  Chemical  Society,
                 Chemistry A European Journal, 2013, 19(42): 14279-14285.   2008, 130(42): 13850-13851.
            [11]  DHAKSHINAMOORTHY A, ASIRI A M, GARCĺA H. Metal-organic   [24]  LONG  J  L,  WANG  S  B,  DING  Z  X,  et al.  Amine-functionalized
                 framework  (MOF)  compounds:  Photocatalysts  for  redox  reactions   zirconium metal-organic framework as efficient visible-light photocatalyst
                 and solar fuel production[J]. Angewandte Chemie International Edition,   for  aerobic  organic  transformations[J].  Chemical  Communications,
                 2016, 55(18): 5414-5445.                          2012, 48(95): 11656-11658.
            [12]  LAURIER  K  G  M,  VERMOORTELE  F,  AMELOOT  R,  et al.   [25]  ABID  H  R,  SHANG  J,  ANG  H  M,  et al.  Amino-functionalized
                 Iron(Ⅲ)-based metal-organic frameworks as visible light photocatalysts[J].   Zr-MOF nanoparticles for adsorption of CO 2 and CH 4[J]. International
                 Journal of the American Chemical Society, 2013, 135(39): 14488-14491.   Journal of Smart & Nano Materials, 2012, 4(1): 1-11.
            [13]  FU  Y  H,  SUN  D  R,  CHEN  Y  J,  et al.  An  amine-functionalized   [26]  WANG B, HUA Y Q, YE Y X, et al. Transparent superhydrophobic
                 titanium  metal-organic  framework  photocatalyst  with  visible-light-
                 induced  activity  for  CO 2  reduction[J].  Angewandte  Chemie,  2012,   solar  glass  prepared  by  fabricating  groove-shaped  arrays  on  the
                 51(14): 3364-3367.                                surface[J]. Applied Surface Science, 2017, 426: 957-964.
            [14]  HORIUCHI Y, TOYAO T, SAITO M, et al. Visible-light-promoted   [27]  HENDON C H, TIANAD, FONTECAVE M, et al. Engineering the
                 photocatalytic hydrogen production by using an amino-functionalized Ti   optical response of the titanium-MIL-125 metal-organic framework
                 (IV) metal-organic framework[J]. Journal of Physical Chemistry C,   through ligand functionalization[J]. Journal of the American Chemical
                 2012, 116(39): 20848-20853.                       Society, 135(30): 10942-10945.
            [15]  SUN D R, LIU W J, FU Y H, et al. Noble metals can have different   [28]  KE  Y  H  (柯银环),  ZENG  M  (曾敏),  JIANG  H  (姜宏), et al.
                 effects on photocatalysis over metal-organic frameworks (MOFs): A   Photocatalytic reduction of carbon dioxide to methanol over N-doped
                 case study on M/NH 2-MIL-125(Ti) (M=Pt and Au)[J]. Chemistry A   TiO 2  nanofibers  under  visible  irradiation[J].  Journal  of  Inorganic
                 European Journal, 2014, 20(16): 4780-4788.        Materials (无机材料学报), 2018, 33(8): 839-844.
            [16]  NASALEVICH M A, BECKER R, RAMOS-FERNANDEZ E V, et   [29]  WU  X  Q,  ZHAO  J,  WANG  L  P,  et al.  Carbon  dots  as  solid-state
                 al.  Co@NH 2-MIL-125(Ti):  Cobaloxime-derived  metal-organic   electron  mediator  for  BiVO 4/CDs/CdS  Z-scheme  photocatalyst
                 framework-based  composite  for  light-driven  H 2  production[J].   working under visible light[J]. Applied Catalysis B Environmental,
                 Energy & Environmental Science, 2015, 8(1): 364-375.   2017, 206: 501-509.
            [17]  SHEN  L  J,  LUO  M  B,  HUANG  L  J,  et al.  A  clean  and  general   [30]  LI X, LIU H L, LUO D L, et al. Adsorption of CO 2 on heterostructure
                 strategy  to  decorate  a  titanium  metal-organic  framework  with   CdS(Bi 2S 3)/TiO 2,  nanotube  photocatalysts  and  their  photocatalytic
                 noble-metal nanoparticles for versatile photocatalytic applications[J].   activities  in  the  reduction  of  CO 2  to  methanol  under  visible  light
                 Inorganic Chemistry, 2015, 54(4): 1191-1193.      irradiation[J]. Chemical Engineering Journal, 2012, 180(6): 151-158.
            [18]  HALMANN M M, STEINBERG M. Greenhouse gas carbon dioxide   [31]  XIAO S (肖洒), TAN H (谈恒), WU S N (吴珊妮), et al. Preparation
                 mitigation science and technology[M]. Lewis Publishers, 1999.   of  CuO/Er-Yb-TiO 2  and  catalytic  synthesis  of  methanol  from  CO 2
            [19]  SUTIN  N,  CREUTZ  C,  FUJITA  E.  Photo-induced  generation  of   under simulated visible light[J]. Materials Reports (材料导报), 2020,
                 dihydrogen  and  reduction  of  carbon  dioxide  using  transition  metal   34(1): 2005-2009.


            (上接第 1135 页)                                       [62]  TANG  S  S,  QIN  C  X,  CHEN  G  Q,  et al.  Synthesis  and  dyeing
                                                                   properties of three hemicyanine-based fluorescent polymeric dyes[J].
            [56]  CHEN D W (陈大伟), QIN C X (秦传香), XING T L (邢铁玲), et al.   AATCC Journal of Research, 2018, 5(2): 19-25.
                 Synthesis and dyeing properties of cationic orange fluorescent dyes   [63]  LAM P, KAN C, YUEN M C, et al. Studies on quinoline type dyes
                 [J]. Printing and Dyeing (印染), 2010, 36(10): 1-4.   and  their  characterisation  studies  on  acrylic  fabric[J].  Coloration
            [57]  ZHANG J (张健), QIN C X (秦传香), DAI L X (戴礼兴). Synthesis
                                                                   Technology, 2012, 128(3): 192-198.
                 and properties of cationic fluorescent dyes[J]. Synthesis Technology   [64]  BARBATU  A,  RADITOIU  A,  BOSCORNEA  C  A,  et al.  Reactive
                 and Application (综合技术与应用), 2012, 27(1): 4-8.      Azomethine Dyes[J]. Revista de Chimie, 2013, 64(3): 268-270.
            [58]  LIU L, QIN C X, TANG R C, et al. Dyeing properties and colour   [65]  SATAM M A, RAUT R K, SEKAR N. Fluorescent azo disperse dyes
                 characteristics of a novel fluorescent dye applied to acrylic fabric[J].   from 3-(1,3-benzothiazol-2-yl) naphthalen-2-ol and comparison with
                 Fibres & Textiles in Eastern Europe, 2013, 21(4): 144-147.   2-naphthol analogs[J]. Dyes and Pigments, 2013, 96(1): 92-103.
            [59]  QIN C X, TANG R C, CHEN B, et al. Study on the dyeing properties   [66]  SHINDE S, SEKAR N. Synthesis, spectroscopic characteristics, dyeing
                 of hemicyanine dyes. I. Acrylic fabrics[J]. Fibers and Polymers, 2010,   performance and TD-DFT study of quinolone based red emitting acid
                 11(2): 193-198.                                   azo dyes[J]. Dyes and Pigments, 2019, 168(2): 12-27.
            [60]  BI L (毕力), ZHANG W (张伟), QIN C X (秦传香), et al. Dyeing   [67]  BAATOUT  K,  SAAD  F,  BAFFOUN  A,  et al.  Luminescent  cotton
                 properties  of  three  semi  cyanine  fluorescent  dyes[J].  Printing  and   fibers coated with fluorescein dye for anti-counterfeiting applications
                 Dyeing (印染), 2014, 40(8): 1-4.                    [J]. Materials Chemistry and Physics, 2019, 234: 304-310.
            [61]  ZHANG W, ZHANG Y, QIN C X, et al. Synthesis and crosslinking   [68]  LIU H, LU M L, PAN F K, et al. Influence of fluorescent dyes for
                 dyeing on cotton fabrics of a novel hemicyanine fluorescent dye[J].   dyeing  of  regenerated  cellulose  fabric[J].  Textile  Research  Journal,
                 Textile Research Journal, 2014, 84(20): 2226-2234.   2019: DOI: 10.117/0040517519892915.
   99   100   101   102   103   104   105   106   107   108   109