Page 104 - 《精细化工》2020年第6期
P. 104
·1170· 精细化工 FINE CHEMICALS 第 37 卷
[7] XIONG C R, BALKUS K J. Mesoporous molecular sieve derived complexes[J]. Comments on Inorganic Chemistry, 1997, 19(2): 67-92.
TiO 2 nanofibers doped with SnO 2[J]. Journal of Physical Chemistry [20] POUDYAL S, LAURSEN S. Photocatalytic CO 2 reduction by H 2O:
C, 2007, 111(28): 10359-10367. insights from modeling electronically relaxed mechanisms[J].
[8] LLABRESIXAMENA F X, CORMA A, GARCIA H. Applications Catalysis Science & Technology, 2019, 9(4): 1048-1059.
for metal-organic frameworks (MOFs) as quantum dot semiconductors[J]. [21] TAN H (谈恒), XIAO S (肖洒), YAO S R (姚淑荣), et al. Visible
Journal of Physical Chemistry C, 2007, 111(1): 80-85. light driven reduction of CO 2 to methanol over CuO/TiO 2 nanofibers[J].
[9] WANG D K, HUANG R K, LIU W J, et al. Fe-based MOFs for Fine Chemicals (精细化工), 2019, 36(6): 1210-1216.
photocatalytic CO 2 reduction: role of coordination unsaturated sites [22] HATTORI H. Antireflection surface with particle coating deposited
and dual excitation pathways[J]. Acs Catalysis, 2014, 4(12): 4254-4260. by electrostatic attraction[J]. Advanced Materials, 2001, 13(1): 51-54.
[23] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium
[10] SUN D R, FU Y H, LIU W J, et al. Studies on photocatalytic CO 2
reduction over NH 2-UiO-66(Zr) and its derivatives: towards a better inorganic building brick forming metal organic frameworks with
understanding of photocatalysis on metal-organic frameworks[J]. exceptional stability[J]. Journal of the American Chemical Society,
Chemistry A European Journal, 2013, 19(42): 14279-14285. 2008, 130(42): 13850-13851.
[11] DHAKSHINAMOORTHY A, ASIRI A M, GARCĺA H. Metal-organic [24] LONG J L, WANG S B, DING Z X, et al. Amine-functionalized
framework (MOF) compounds: Photocatalysts for redox reactions zirconium metal-organic framework as efficient visible-light photocatalyst
and solar fuel production[J]. Angewandte Chemie International Edition, for aerobic organic transformations[J]. Chemical Communications,
2016, 55(18): 5414-5445. 2012, 48(95): 11656-11658.
[12] LAURIER K G M, VERMOORTELE F, AMELOOT R, et al. [25] ABID H R, SHANG J, ANG H M, et al. Amino-functionalized
Iron(Ⅲ)-based metal-organic frameworks as visible light photocatalysts[J]. Zr-MOF nanoparticles for adsorption of CO 2 and CH 4[J]. International
Journal of the American Chemical Society, 2013, 135(39): 14488-14491. Journal of Smart & Nano Materials, 2012, 4(1): 1-11.
[13] FU Y H, SUN D R, CHEN Y J, et al. An amine-functionalized [26] WANG B, HUA Y Q, YE Y X, et al. Transparent superhydrophobic
titanium metal-organic framework photocatalyst with visible-light-
induced activity for CO 2 reduction[J]. Angewandte Chemie, 2012, solar glass prepared by fabricating groove-shaped arrays on the
51(14): 3364-3367. surface[J]. Applied Surface Science, 2017, 426: 957-964.
[14] HORIUCHI Y, TOYAO T, SAITO M, et al. Visible-light-promoted [27] HENDON C H, TIANAD, FONTECAVE M, et al. Engineering the
photocatalytic hydrogen production by using an amino-functionalized Ti optical response of the titanium-MIL-125 metal-organic framework
(IV) metal-organic framework[J]. Journal of Physical Chemistry C, through ligand functionalization[J]. Journal of the American Chemical
2012, 116(39): 20848-20853. Society, 135(30): 10942-10945.
[15] SUN D R, LIU W J, FU Y H, et al. Noble metals can have different [28] KE Y H (柯银环), ZENG M (曾敏), JIANG H (姜宏), et al.
effects on photocatalysis over metal-organic frameworks (MOFs): A Photocatalytic reduction of carbon dioxide to methanol over N-doped
case study on M/NH 2-MIL-125(Ti) (M=Pt and Au)[J]. Chemistry A TiO 2 nanofibers under visible irradiation[J]. Journal of Inorganic
European Journal, 2014, 20(16): 4780-4788. Materials (无机材料学报), 2018, 33(8): 839-844.
[16] NASALEVICH M A, BECKER R, RAMOS-FERNANDEZ E V, et [29] WU X Q, ZHAO J, WANG L P, et al. Carbon dots as solid-state
al. Co@NH 2-MIL-125(Ti): Cobaloxime-derived metal-organic electron mediator for BiVO 4/CDs/CdS Z-scheme photocatalyst
framework-based composite for light-driven H 2 production[J]. working under visible light[J]. Applied Catalysis B Environmental,
Energy & Environmental Science, 2015, 8(1): 364-375. 2017, 206: 501-509.
[17] SHEN L J, LUO M B, HUANG L J, et al. A clean and general [30] LI X, LIU H L, LUO D L, et al. Adsorption of CO 2 on heterostructure
strategy to decorate a titanium metal-organic framework with CdS(Bi 2S 3)/TiO 2, nanotube photocatalysts and their photocatalytic
noble-metal nanoparticles for versatile photocatalytic applications[J]. activities in the reduction of CO 2 to methanol under visible light
Inorganic Chemistry, 2015, 54(4): 1191-1193. irradiation[J]. Chemical Engineering Journal, 2012, 180(6): 151-158.
[18] HALMANN M M, STEINBERG M. Greenhouse gas carbon dioxide [31] XIAO S (肖洒), TAN H (谈恒), WU S N (吴珊妮), et al. Preparation
mitigation science and technology[M]. Lewis Publishers, 1999. of CuO/Er-Yb-TiO 2 and catalytic synthesis of methanol from CO 2
[19] SUTIN N, CREUTZ C, FUJITA E. Photo-induced generation of under simulated visible light[J]. Materials Reports (材料导报), 2020,
dihydrogen and reduction of carbon dioxide using transition metal 34(1): 2005-2009.
(上接第 1135 页) [62] TANG S S, QIN C X, CHEN G Q, et al. Synthesis and dyeing
properties of three hemicyanine-based fluorescent polymeric dyes[J].
[56] CHEN D W (陈大伟), QIN C X (秦传香), XING T L (邢铁玲), et al. AATCC Journal of Research, 2018, 5(2): 19-25.
Synthesis and dyeing properties of cationic orange fluorescent dyes [63] LAM P, KAN C, YUEN M C, et al. Studies on quinoline type dyes
[J]. Printing and Dyeing (印染), 2010, 36(10): 1-4. and their characterisation studies on acrylic fabric[J]. Coloration
[57] ZHANG J (张健), QIN C X (秦传香), DAI L X (戴礼兴). Synthesis
Technology, 2012, 128(3): 192-198.
and properties of cationic fluorescent dyes[J]. Synthesis Technology [64] BARBATU A, RADITOIU A, BOSCORNEA C A, et al. Reactive
and Application (综合技术与应用), 2012, 27(1): 4-8. Azomethine Dyes[J]. Revista de Chimie, 2013, 64(3): 268-270.
[58] LIU L, QIN C X, TANG R C, et al. Dyeing properties and colour [65] SATAM M A, RAUT R K, SEKAR N. Fluorescent azo disperse dyes
characteristics of a novel fluorescent dye applied to acrylic fabric[J]. from 3-(1,3-benzothiazol-2-yl) naphthalen-2-ol and comparison with
Fibres & Textiles in Eastern Europe, 2013, 21(4): 144-147. 2-naphthol analogs[J]. Dyes and Pigments, 2013, 96(1): 92-103.
[59] QIN C X, TANG R C, CHEN B, et al. Study on the dyeing properties [66] SHINDE S, SEKAR N. Synthesis, spectroscopic characteristics, dyeing
of hemicyanine dyes. I. Acrylic fabrics[J]. Fibers and Polymers, 2010, performance and TD-DFT study of quinolone based red emitting acid
11(2): 193-198. azo dyes[J]. Dyes and Pigments, 2019, 168(2): 12-27.
[60] BI L (毕力), ZHANG W (张伟), QIN C X (秦传香), et al. Dyeing [67] BAATOUT K, SAAD F, BAFFOUN A, et al. Luminescent cotton
properties of three semi cyanine fluorescent dyes[J]. Printing and fibers coated with fluorescein dye for anti-counterfeiting applications
Dyeing (印染), 2014, 40(8): 1-4. [J]. Materials Chemistry and Physics, 2019, 234: 304-310.
[61] ZHANG W, ZHANG Y, QIN C X, et al. Synthesis and crosslinking [68] LIU H, LU M L, PAN F K, et al. Influence of fluorescent dyes for
dyeing on cotton fabrics of a novel hemicyanine fluorescent dye[J]. dyeing of regenerated cellulose fabric[J]. Textile Research Journal,
Textile Research Journal, 2014, 84(20): 2226-2234. 2019: DOI: 10.117/0040517519892915.