Page 125 - 《精细化工》2020年第7期
P. 125
第 7 期 赵国峥,等: 介孔 Ag/AgCl/CeO 2 的制备及其 photo-CWPO 体系的催化性能 ·1407·
CeO 2 ,然后采用沉积-沉淀法和光还原法制备出 sono-Fenton-like process using magnetic cobalt ferrite-reduced
graphene oxide(CoFe 2O 4-rGO) nanocomposite for the removal of
Ag/AgCl/CeO 2 催化剂。利用XRD、N 2 吸附-脱附、SEM、
organic dyes from aqueous solution[J]. Ultrasonics-Sonochemistry,
TEM、EDS 和 UV-Vis-DRS 等手段对材料进行了表 2018, 40(PartA): 841-852.
征与分析,发现采用微波辅助技术可以快速制备出 [9] MUNOZ P G, PLIEGO G, ZAZO J A, et al. Modified ilmenite for
CWPO-photoassisted process under LED light[J]. Chemical
具有有序介孔结构的 Ag/AgCl/CeO 2 催化材料。Ag/ Engineering Journal, 2016, 318(15): 89-94.
AgCl 的负载没有改变 CeO 2 的介孔结构,Ag/AgCl/ [10] IFELEBUEGU A O, UKPEBOR J, NZERIBE-NWEDO B.
Mechanistic evaluation and reaction pathway of UV photo-assisted
CeO 2 的比表面积减小。Ag/AgCl/CeO 2 对可见光 Fenton-like degradation of progesterone in water and wastewater[J].
(400~700 nm)具有较强的吸收。 International Journal of Environmental Science and Technology,
2016, 13(12): 2757-2766.
(2)在可见光辐照下,建立了 photo-CWPO 联 [11] GOLESTANBAGH M, PARVINI M, PENDASHTEH A. Preparation,
用体系,研究了 Ag/AgCl/CeO 2 在不同条件下的催化 characterization and photocatalytic properties of visible-light-driven
性能,催化剂投加量、Ag 负载量、H 2 O 2 浓度及 pH CuO/SnO 2/TiO 2 photocatalyst[J]. Catalysis Letters, 2018, 148(7):
2162-2178.
均会对 COD 的去除率产生影响。结果表明:在高压 [12] WANG P, HUANG B B, QIN X Y. Ag@AgCl: A highly efficient and
钠灯辐照下,COD 质量浓度为 500 mg/L 的丙烯腈 stable photocatalyst active under visible light[J]. Angewandte
Chemie International Edition, 2008, 47(41): 7773-7965.
废水、投加 200 mg Ag/AgCl/CeO 2 (2)和 8 mL 的 H 2O 2 [13] WU M, YAN L T, LI J L, et al. Synthesis and photocatalytic
(质量分数 30%),水浴温度 40 ℃,反应 60 min 后, performance of Ag/AgCl/ZnO tetrapod composites[J]. Research on
Chemical Intermediates, 2017, 43(11): 6407-6419.
COD 的最大去除率可达到 90%。催化剂使用 5 次后
[14] LI S J, XUE B, WU G Y, et al. A novel flower-like Ag/AgCl/
COD 去除率仍能达到 85%。 BiOCOOH ternary heterojunction photocatalyst: facile construction
(3)推测了可能的降解机理:在可见光的照射 and its superior photocatalytic performance for the removal of toxic
pollutants[J]. Nanomaterials, 2019, 9(11): 1562-1570.
下,Ag、AgCl、CeO 2 与 H 2O 2 协同作用产生•OH 和 [15] GUAN X M, LIN S J, LAN J W, et al. Fabrication of Ag/AgCl/
0
Cl 等活性物种,能够有效降解丙烯腈废水中的有机 ZIF-8/TiO 2 decorated cotton fabric as a highly efficient photocatalyst
for degradation of organic dyes under visible light[J]. Cellulose,
物。通过叔丁醇捕获•OH 实验,证明在 photo-CWPO 2019, 26(12): 7437-7450.
体系降解有机物的过程中起主要作用的是•OH。 [16] ZHAO D Y, HUO Q S, FENG J L, et al. Nonionie tri-block and star
di-block copolymer and oligomeric surfactant syntheses of highly
(4)以 Ag/AgCl/CeO 2 为催化剂,photo-CWPO
ordered hydrothermally stable mesoporous silica structures[J].
联用能够高效降解丙烯腈废水中有机物。但是由于 Journal of the American Chemical Society, 1998, 120(24): 6024-
本研究催化实验都属于间歇性实验,难以实际工程 6036.
[17] AWAZU K, FUJIMAKI M, ROCKSTUHL C, et al. A plasmonic
应用。因此,本课题组将进一步研究太阳光辐照下, photocatalyst consisting of silver nanoparticles embedded in titanium
Ag/AgCl/CeO 2 在连续性条件下的 CWPO 催化性能。 dioxide[J]. Jouranl of the American Chemical Society, 2008, 130(5):
1676-1680.
参考文献: [18] CHEN X, ZHU H Y, ZHAO J C, et al. Visible-light-driven oxidation
of organic contaminants in air with gold nanoparticle catalysts on
[1] KUMAR A, PRASAD B. Catalytic peroxidation of acrylonitrile oxide supports[J]. Angewandte Chemie, 2008, 47(29): 5353-5356.
aqueous solution by Ni-doped CeO 2 catalysts: characterization, kinetics [19] YADAV B, SRIVASTAVA V C. Catalytic peroxidation of recalcitrant
and thermodynamics[J]. International Journal of Environmental quinoline by ceria impregnated granular activated carbon[J]. Clean
Science and Technology, 2020, 17(3): 1809-1824. Technolgy Environment Policy, 2017, 19(5): 1547-1555.
[2] FENTON H J H. Oxidation of tartaric acid in presence of iron[J]. [20] SUBBARAMAIAH V, SRIVASTAVA V C, MALL I D. Catalytic
Journal of the Chemical Society, Transactions, 1894, 65: 899-910. wet peroxidation of pyridine bearing wastewater by cerium supported
[3] HU Y, LI Y L, HE J Y, et al. EDTA-Fe(Ⅲ) fenton-like oxidation for SBA-15[J]. Journal of Hazardous Materials, 2013, 248/249(15): 355-
the degradation of malachite green[J]. Journal of Environmental 363.
Management, 2018, 226(15): 256-263. [21] PEYMANI M, ALAVI S, ARANDIYAN H, et al. Rational design of
[4] LI H P, CHENG R Q, LIU Z L, et al. Waste control by waste: high surface area mesoporous Ni/CeO 2 for partial oxidation of
Fenton–like oxidation of phenol over Cu modified ZSM-5 from coal propane[J]. Catalysts, 2018, 8(9): 388-399.
gangue[J]. Science of the Total Environment, 2019, 683(5): 638-647. [22] DEVI L G, KUMAR S G, REDDY K M, et al. Photo degradation of
[5] HU X X, LI R, ZHAO S Y, et al. Microwave-assisted preparation of methyl orange anazo dye by advanced Fenton process using zero
flower-like cobalt phosphate and its application as a new heterogeneous valent metallic iron: influence of various reaction parameters and its
Fenton-like catalyst[J]. Applied Surface Science, 2017, 396(28): degradation mechanism[J]. Journal of Hazardous Materials, 2009,
1393-1402. 164(2/3): 459-467.
[6] WAN Z, WANG J L. Fenton-like degradation of sulfamethazine [23] SINGH S, LO S L. Catalytic performance of hierarchical metal
using Fe 3O 4/Mn 3O 4 nanocomposite catalyst: Kinetics and catalytic oxides for per-oxidative degradation of pyridine in aqueous
mechanism[J]. Environmental Science and Pollution Research, 2017, solution[J]. Chemical Engineering Journal, 2017, 309(1): 753-765.
24(1): 568-577. [24] BABA Y, YATAGAI T, HARADA T, et al. Hydroxyl radical
[7] LI Z P, LIU F, YI D, et al. Preparation and properties of Cu-Ni generation in the photo-fenton process: Effects of carboxylic acids on
bi-metallic, oxide catalyst supported on activated carbon for iron redox cycling[J]. Chemical Engineering Journal, 2015, 277(1):
microwave assisted catalytic wet hydrogen peroxide oxidation for 229-241.
biologically pretreated coal chemical industry wastewater treatment[J]. [25] HECKERT E G, SEAL S, SELF W T. Fenton-like reaction catalyzed
Chemosphere, 2019, 214(11): 17-24. by the rare earth inner transition metal cerium[J]. Environmental
[8] HASSANI A, CELIKDAG G, EGHBALI P, et al. Heterogeneous Science & Technology, 2008, 42(13): 5014-5019.