Page 139 - 《精细化工》2020年第7期
P. 139
第 7 期 罗晓民,等: RGONs@Fe 3 O 4 /WPU 超细纤维合成革的制备及其电磁屏蔽性能 ·1421·
中的损耗,使其表现出优异的电磁屏蔽性能。 参考文献:
[1] WANG X X, SHU J C, CAO W Q, et al. Eco-mimetic
nanoarchitecture for green EMI shielding[J]. Chemical Engineering
Journal, 2019, 369: 1068-1077.
[2] JIANG D, MURUGADOSS V, WANG Y, et al. Electromagnetic
interference shielding polymers and nanocomposites-A review[J].
Polymer Reviews, 2019, 59(2): 280-337.
[3] LIN J C. Human exposure to RF, microwave, and millimeter-wave
electromagnetic radiation [Health Effects][J]. IEEE Microwave
Magazine, 2016, 17(6): 32-36.
[4] ABBASI H, ANTUNES M, VELASCO J I. Recent advances in
carbon-based polymer nanocomposites for electromagnetic interference
shielding[J]. Progress in Materials Science, 2019, 103: 319-373.
[5] ROH J S, CHI Y S, KANG T J, et al. Electromagnetic shielding
effectiveness of multifunctional metal composite fabrics[J]. Textile
Research Journal, 2008, 78(9): 825-835.
[6] CAO H F (曹海峰), ZHANG Q (张琪), WU Z (吴忠). Progress of
electromagnetic shielding property of graphene-based material[J].
New Chemical Materials (化工新型材料), 2016, 44(2): 1-3.
[7] KONG L, YIN X W, XU H L, et al. Powerful absorbing and
lightweight electromagnetic shielding CNTs/RGO composite[J].
Carbon, 2019, 145: 61-66.
图 11 RGONs@Fe 3 O 4 电磁屏蔽机理 [8] YANKOWITZ M, CHEN S, POLSHYN H, et al. Tuning
superconductivity in twisted bilayer graphene[J]. Science, 2019,
Fig. 11 Electromagnetic shielding mechanism of RGONs@ 363(6431): 1059-1064.
Fe 3 O 4 [9] LIANG C B, QIU H, HAN Y Y, et al. Superior electromagnetic
interference shielding 3D graphene nanoplatelets/reduced graphene
表 1 不同聚合物基复合涂层的电磁屏蔽性能 oxide foam/epoxy nanocomposites with high thermal conductivity[J].
Journal of Materials Chemistry C, 2019, 7(9): 2725-2733.
Table 1 Electromagnetic shielding properties of different [10] YANG W X, ZHAO Z D, WU K, et al. Ultrathin flexible reduced
polymer-based composite coatings graphene oxide/cellulose nanofiber composite films with strongly
anisotropic thermal conductivity and efficient electromagnetic
EMI SE/ 频率 interference shielding[J]. Journal of Materials Chemistry C, 2017,
填料 基体 填充量
dB /GHz 5(15): 3748-3756.
Ag [21] 聚苯乙烯(PS) PS 质量的 2.5% 33 8.2~12.4 [11] WANG Y, GUAN H T, DONG C J, et al. Reduced graphene oxide
(RGO)/Mn 3O 4 nanocomposites for dielectric loss properties and
RGO/ 聚对苯二甲酸 PET 质量的 10% 30 8.2~12.4 electromagnetic interference shielding effectiveness at high
[22] frequency[J]. Ceramics International, 2016, 42(1): 936-942.
Fe 3O 4
乙二醇酯(PEI) [12] SHEN B, LI Y, ZHAI W T, et al. Compressible graphene-coated
polymer foams with ultralow density for adjustable electromagnetic
石墨 [23] 聚乙烯(PE) PE 体积的 18.7% 33 8.2~12.4 interference (EMI) shielding[J]. ACS Applied Materials & Interfaces,
2016, 8(12): 8050-8057.
MWCNTs/ 聚苯胺(PANI) PANI 质量的 20% 26 8.2~12.4 [13] WANG L, QIU H, LIANG C B, et al. Electromagnetic interference
Fe 3O 4/Fe [24] shielding MWCNT-Fe 3O 4@Ag/epoxy nanocomposites with
RGONs@ WPU 超细纤维 WPU 质量的 5% 36 8.2~12.4 satisfactory thermal conductivity and high thermal stability[J].
Fe 3O 4 Carbon, 2019, 141: 506-514.
合成革 [14] HUANGFU Y M, LIANG C B, HAN Y Y, et al. Fabrication and
investigation on the Fe 3O 4/thermally annealed graphene aerogel/
epoxy electromagnetic interference shielding nanocomposites[J].
Composites Science and Technology, 2019, 169: 70-75.
3 结论 [15] DING Y, ZHANG L, LIAO Q L, et al. Electromagnetic wave
absorption in reduced graphene oxide functionalized with Fe 3O 4/Fe
nanorings[J]. Nano Research, 2016, 9(7): 2018-2025.
[16] ZAABA N I, FOO K L, HASHIM U, et al. Synthesis of graphene
(1)采用水热共沉淀法制备 RGONs@Fe 3 O 4 杂 oxide using modified hummers method: Solvent influence[J].
化纳米片,通过物理共混-平板刮涂法得到表面涂覆 Procedia Engineering, 2017, 184: 469-477.
[17] WU H, GAO G, ZHOU X, et al. Control on the formation of Fe 3O 4
RGONs@Fe 3 O 4 /WPU 具有电磁屏蔽性能的超细纤维 nanoparticles on chemically reduced graphene oxide surfaces[J].
CrystEngComm, 2012, 14(2): 499-504.
合成革,以拓宽超细纤维合成革在电磁屏蔽领域的 [18] ZHOU J S, SONG H H, MA L L, et al. Magnetite/graphene
nanosheet composites: Interfacial interaction and its impact on the
多功能应用。 durable high-rate performance in lithium-ion batteries[J]. RSC
Advances, 2011, 1(5): 782-791.
n+
(2)当 GO 与 Fe 物质的量比为 1∶10 时, [19] TAO J, YU X C, HU B, et al. Graphene-based tunable plasmonic
Fe 3 O 4 纳米粒子均匀沉积在 RGONs 片层表面及间 Bragg reflector with a broad bandwidth[J]. Optics Letters, 2014,
39(2): 271-274.
隙,阻碍了 RGONs 的再重叠,扩大了 RGONs 的层 [20] WANG T S, LIU Z H, LU M M, et al. Graphene-Fe 3O 4 nanohybrids:
Synthesis and excellent electromagnetic absorption properties[J].
间距,使 RGONs 的高比表面积、高导电性能得以 Journal of Applied Physics, 2013, 113(2): 1-8.
[21] ARJMAND M, MOUD A A, LI Y, et al. Outstanding electromagnetic
更好地发挥。 interference shielding of silver nanowires: Comparison with carbon
nanotubes[J]. RSC Advances, 2015, 5(70): 56590-56598.
(3)随着 RGONs@Fe 3 O 4 杂化纳米片的加入, [22] SHEN B, ZHAI W T, TAO M M, et al. Lightweight, multifunctional
RGONs@Fe 3 O 4 /WPU 超细纤维合成革的电、磁特性 polyetherimide/graphene@Fe 3O 4 foams for shielding of electromagnetic
pollution[J]. ACS Applied Materials & Interfaces, 2013, 5(21):
提升。当 RGONs@Fe 3 O 4 杂化纳米片添加量为 5%时, 11383-11391.
[23] JIANG X, YAN D X, BAO Y, et al. Facile, green and affordable
RGONs@Fe 3 O 4 /WPU 超细纤维合成革的电磁屏蔽效 strategy for structuring natural graphite/polymer composite with
efficient electromagnetic interference shielding[J]. RSC Advances.
能达到本实验条件最佳(36 dB),比 RGONs/WPU 2015, 5(29): 22587-22592.
超细纤维合成革提高约 40%。这是由于 RGONs@ [24] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled
carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon
Fe 3 O 4 杂化纳米片的表面效应及在 RGONs@Fe 3 O 4 /WPU nanotube multiheterostructures for highly effective microwave
absorption[J]. ACS Applied Materials & Interfaces, 2012, 4(12):
超细纤维合成革中电、磁双损耗共同作用的结果。 6949-6956.