Page 139 - 《精细化工》2020年第7期
P. 139

第 7 期             罗晓民,等: RGONs@Fe 3 O 4 /WPU 超细纤维合成革的制备及其电磁屏蔽性能                         ·1421·


            中的损耗,使其表现出优异的电磁屏蔽性能。                               参考文献:
                                                               [1]   WANG  X  X,  SHU  J  C,  CAO  W  Q,  et al.  Eco-mimetic
                                                                   nanoarchitecture for green EMI shielding[J]. Chemical Engineering
                                                                   Journal, 2019, 369: 1068-1077.
                                                               [2]   JIANG  D,  MURUGADOSS  V,  WANG  Y,  et al.  Electromagnetic
                                                                   interference  shielding  polymers  and  nanocomposites-A  review[J].
                                                                   Polymer Reviews, 2019, 59(2): 280-337.
                                                               [3]   LIN J C. Human exposure to RF, microwave, and millimeter-wave
                                                                   electromagnetic  radiation  [Health  Effects][J].  IEEE  Microwave
                                                                   Magazine, 2016, 17(6): 32-36.
                                                               [4]   ABBASI H,  ANTUNES  M, VELASCO J I.  Recent advances in
                                                                   carbon-based polymer nanocomposites for electromagnetic interference
                                                                   shielding[J]. Progress in Materials Science, 2019, 103: 319-373.
                                                               [5]   ROH  J  S,  CHI  Y  S,  KANG  T  J,  et al.  Electromagnetic  shielding
                                                                   effectiveness  of  multifunctional  metal  composite  fabrics[J].  Textile
                                                                   Research Journal, 2008, 78(9): 825-835.
                                                               [6]   CAO H F (曹海峰), ZHANG Q (张琪), WU Z (吴忠). Progress of
                                                                   electromagnetic  shielding  property  of  graphene-based  material[J].
                                                                   New Chemical Materials (化工新型材料), 2016, 44(2): 1-3.
                                                               [7]   KONG  L,  YIN  X  W,  XU  H  L,  et al.  Powerful  absorbing  and
                                                                   lightweight  electromagnetic  shielding  CNTs/RGO  composite[J].
                                                                   Carbon, 2019, 145: 61-66.
                    图 11    RGONs@Fe 3 O 4 电磁屏蔽机理              [8]   YANKOWITZ  M,  CHEN  S,  POLSHYN  H,  et al.  Tuning
                                                                   superconductivity  in  twisted  bilayer  graphene[J].  Science,  2019,
            Fig. 11    Electromagnetic shielding mechanism of RGONs@   363(6431): 1059-1064.
                   Fe 3 O 4                                    [9]   LIANG  C  B,  QIU  H,  HAN  Y  Y,  et al.  Superior  electromagnetic
                                                                   interference  shielding  3D  graphene  nanoplatelets/reduced  graphene
                 表 1    不同聚合物基复合涂层的电磁屏蔽性能                          oxide foam/epoxy nanocomposites with high thermal conductivity[J].
                                                                   Journal of Materials Chemistry C, 2019, 7(9): 2725-2733.
            Table  1    Electromagnetic  shielding  properties  of  different   [10]  YANG W X, ZHAO Z D, WU K, et al. Ultrathin flexible reduced
                    polymer-based composite coatings               graphene  oxide/cellulose  nanofiber  composite  films  with  strongly
                                                                   anisotropic  thermal  conductivity  and  efficient  electromagnetic
                                              EMI SE/  频率          interference  shielding[J].  Journal  of  Materials  Chemistry  C,  2017,
               填料        基体          填充量
                                                dB   /GHz          5(15): 3748-3756.
            Ag [21]    聚苯乙烯(PS) PS 质量的 2.5%     33   8.2~12.4  [11]  WANG Y, GUAN H T, DONG C J, et al. Reduced graphene oxide
                                                                   (RGO)/Mn 3O 4  nanocomposites  for  dielectric  loss  properties  and
            RGO/     聚对苯二甲酸      PET 质量的 10%    30   8.2~12.4      electromagnetic  interference  shielding  effectiveness  at  high
                [22]                                               frequency[J]. Ceramics International, 2016, 42(1): 936-942.
            Fe 3O 4
                     乙二醇酯(PEI)                                 [12]  SHEN  B,  LI  Y,  ZHAI  W  T,  et al.  Compressible  graphene-coated
                                                                   polymer foams with ultralow density for adjustable electromagnetic
            石墨  [23]    聚乙烯(PE) PE 体积的 18.7%    33   8.2~12.4      interference (EMI) shielding[J]. ACS Applied Materials & Interfaces,
                                                                   2016, 8(12): 8050-8057.
            MWCNTs/  聚苯胺(PANI) PANI 质量的 20%     26   8.2~12.4  [13]  WANG L, QIU H, LIANG C B, et al. Electromagnetic interference
            Fe 3O 4/Fe [24]                                        shielding   MWCNT-Fe 3O 4@Ag/epoxy   nanocomposites   with
            RGONs@   WPU 超细纤维 WPU 质量的 5%        36   8.2~12.4      satisfactory  thermal  conductivity  and  high  thermal  stability[J].
            Fe 3O 4                                                Carbon, 2019, 141: 506-514.
                     合成革                                       [14]  HUANGFU  Y  M,  LIANG  C  B,  HAN  Y  Y,  et al.  Fabrication  and
                                                                   investigation  on  the  Fe 3O 4/thermally  annealed  graphene  aerogel/
                                                                   epoxy  electromagnetic  interference  shielding  nanocomposites[J].
                                                                   Composites Science and Technology, 2019, 169: 70-75.
            3   结论                                             [15]  DING  Y,  ZHANG  L,  LIAO  Q  L,  et al.  Electromagnetic  wave
                                                                   absorption in reduced graphene oxide functionalized with Fe 3O 4/Fe
                                                                   nanorings[J]. Nano Research, 2016, 9(7): 2018-2025.
                                                               [16]  ZAABA N I, FOO K L, HASHIM U, et al. Synthesis of graphene
                (1)采用水热共沉淀法制备 RGONs@Fe 3 O 4 杂                     oxide  using  modified  hummers  method:  Solvent  influence[J].
            化纳米片,通过物理共混-平板刮涂法得到表面涂覆                                Procedia Engineering, 2017, 184: 469-477.
                                                               [17]  WU H, GAO G, ZHOU X, et al. Control on the formation of Fe 3O 4
            RGONs@Fe 3 O 4 /WPU 具有电磁屏蔽性能的超细纤维                      nanoparticles  on  chemically  reduced  graphene  oxide  surfaces[J].
                                                                   CrystEngComm, 2012, 14(2): 499-504.
            合成革,以拓宽超细纤维合成革在电磁屏蔽领域的                             [18]  ZHOU  J  S,  SONG  H  H,  MA  L  L,  et al.  Magnetite/graphene
                                                                   nanosheet  composites:  Interfacial  interaction  and  its  impact  on the
            多功能应用。                                                 durable  high-rate  performance  in  lithium-ion  batteries[J].  RSC
                                                                   Advances, 2011, 1(5): 782-791.
                                 n+
                (2)当 GO 与 Fe 物质的量比为 1∶10 时,                    [19]  TAO  J,  YU  X  C,  HU  B,  et al.  Graphene-based  tunable  plasmonic
            Fe 3 O 4 纳米粒子均匀沉积在 RGONs 片层表面及间                        Bragg  reflector  with  a  broad  bandwidth[J].  Optics  Letters,  2014,
                                                                   39(2): 271-274.
            隙,阻碍了 RGONs 的再重叠,扩大了 RGONs 的层                      [20]  WANG T S, LIU Z H, LU M M, et al. Graphene-Fe 3O 4 nanohybrids:
                                                                   Synthesis  and  excellent  electromagnetic  absorption  properties[J].
            间距,使 RGONs 的高比表面积、高导电性能得以                              Journal of Applied Physics, 2013, 113(2): 1-8.
                                                               [21]  ARJMAND M, MOUD A A, LI Y, et al. Outstanding electromagnetic
            更好地发挥。                                                 interference shielding of silver nanowires: Comparison with carbon
                                                                   nanotubes[J]. RSC Advances, 2015, 5(70): 56590-56598.
                (3)随着 RGONs@Fe 3 O 4 杂化纳米片的加入,                 [22]  SHEN B, ZHAI W T, TAO M M, et al. Lightweight, multifunctional
            RGONs@Fe 3 O 4 /WPU 超细纤维合成革的电、磁特性                      polyetherimide/graphene@Fe 3O 4  foams for shielding of electromagnetic
                                                                   pollution[J].  ACS  Applied  Materials  &  Interfaces,  2013,  5(21):
            提升。当 RGONs@Fe 3 O 4 杂化纳米片添加量为 5%时,                     11383-11391.
                                                               [23]  JIANG  X,  YAN  D  X,  BAO  Y,  et al.  Facile,  green  and  affordable
            RGONs@Fe 3 O 4 /WPU 超细纤维合成革的电磁屏蔽效                      strategy  for  structuring  natural  graphite/polymer  composite  with
                                                                   efficient  electromagnetic  interference  shielding[J].  RSC  Advances.
            能达到本实验条件最佳(36  dB),比 RGONs/WPU                         2015, 5(29): 22587-22592.
            超细纤维合成革提高约 40%。这是由于 RGONs@                         [24]  CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled
                                                                   carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon
            Fe 3 O 4 杂化纳米片的表面效应及在 RGONs@Fe 3 O 4 /WPU              nanotube  multiheterostructures  for  highly  effective  microwave
                                                                   absorption[J].  ACS  Applied  Materials  &  Interfaces,  2012,  4(12):
            超细纤维合成革中电、磁双损耗共同作用的结果。                                 6949-6956.
   134   135   136   137   138   139   140   141   142   143   144