Page 146 - 《精细化工》2020年第7期
P. 146

·1428·                            精细化工   FINE CHEMICALS                                 第 37 卷

            要为物理吸附;吸附等温线符合 Freundlich 模型,                          methylene blue and orange-G from waste using magnetic biochar[J].
            为多层吸附。                                                 International Journal of Nanoscience, 2015, 14(4): 1550009.
                                                               [12]  ZHOU  J  Y,  LIU  Y  Y,  HAN  Y  T,  et al.  Bone-derived  biochar  and
                                                                   magnetic  biochar  for  effective  removal  of  fluoride  in  groundwater:
            参考文献:
                                                                   Effects  of  synthesis  method  and  coexisting  chromium[J].  Water
            [1]   ZHOU X (周鑫),  TANG Y (唐勇).  Development  trend  of  China's   Environment Research, 2019, 91(7): 588-597.
                 dye  industry  in  2018-2022[J].  Dyestuffs  and  coloration  (染料与染  [13]  THINES K R, ABDULLAH E C, MUBARAK N M, et al. Synthesis
                 色), 2018, 55(1): 11-20.                           of  magnetic  biochar  from  agricultural  waste  biomass  to  enhancing
            [2]   SPONZA  D  T.  Toxicity  studies  in  a  chemical  dye  production   route  for  waste  water  and  polymer  application:  A  review[J].
                 industry in Turkey[J]. Journal of Hazardous Materials, 2006, 138(3):   Renewable & Sustainable Energy Reviews, 2017, 67: 257-276.
                 438-447.                                      [14]  RUDGE  S  R, KURTZ T L,  VESSELY C  R,  et al.  Preparation,
            [3]   FORGACS E, CSERHATI T, OROS G. Removal of synthetic dyes   characterization, and performance of magnetic iron-carbon composite
                 from  wastewaters:  A  review[J].  Environment  International,  2004,   microparticles  for  chemotherapy[J].  Biomaterials,  2000,  21(14):
                 30(7): 953-971.                                   1411-1420.
            [4]   SANGEETA  S,  AMANDEEP  K.  Various  methods  for  removal  of   [15]  YANG N, ZHU S M, ZHANG D, et al. Synthesis and properties of
                 dyes  from  industrial  effluents—A  review[J].  Indian  Journal  of   magnetic  Fe 3O 4-activated  carbon  nanocomposite  particles  for  dye
                 Science & Technology, 2018, 11(12): 1-21.         removal[J]. Materials Letters, 2008, 62(4/5): 645-647.
            [5]   KRZYSZTOF  P,  ŚWIDERSKA-DABROWSKA  R,  ZARZYCKI  P   [16]  CASTRO  C  S,  GUERREIRO  M  C,  GONCALVES  M,  et al.
                 K. Dye removal from water and wastewater using various physical,   Activated carbon/iron oxide composites for the removal of atrazine
                 chemical, and biological Processes[J]. Journal of Aoac International,   from  aqueous  medium[J].  Journal  of  Hazardous  Materials,  2009,
                 2018, 101(5): 1371-1384.                          164(2/3): 609-614.
            [6]   MOHAN  D,  PITTMAN  C  U.  Activated  carbons  and  low  cost   [17]  BATE  G,  ALSTAD  J  K.  A  critical  review  of  magnetic  recording
                 adsorbents  for  remediation  of  tri-  and  hexavalent  chromium  from   materials[J]. IEEE Transactions on Magnetics, 1970, 5(4): 821-839.
                 water[J]. Journal of Hazardous Materials, 2006, 137(2): 762-811.     [18]  HE J, HUANG M, WANG D, et al. Magnetic separation techniques
            [7]   SANDOVAL  R,  COOPER  A  M,  AYMAR  K,  et al.  Removal  of   in sample preparation for biological analysis: A review[J]. Journal of
                 arsenic and methylene blue from water by granular activated carbon   Pharmaceutical & Biomedical Analysis, 2014, 101: 84-101.
                 media impregnated with zirconium dioxide nanoparticles[J]. Journal   [19]  KIM  H,  KANG  S  O,  PARK  S,  et al.  Adsorption  isotherms  and
                 of Hazardous Materials, 2011, 193: 296-303.       kinetics of  cationic  and  anionic  dyes  on  three-dimensional  reduced
            [8]   VAUGHAN  R  L,  REED  B  E.  Modeling  As(Ⅴ)  removal  by  a  iron   graphene  oxide  macrostructure[J].  Journal  of  Industrial  and
                 oxide impregnated activated carbon using the surface complexation   Engineering Chemistry, 2015, 21: 1191-1196.
                 approach[J]. Water Research, 2005, 39(6): 1005-1014.     [20]  ZHOU J (周洁), MA M (马明), ZHANG Y (张宇), et al. Synthesis
            [9]   JIANG  C  Y  (蒋春燕), SHI F L (石凤丽),  LI  Y  J  (李英杰),  et al.   and  characterization  of  magnetite  particles  with  different
                 Research progress of preparation of biochar and its application for water   diamenters[J].  Journal  of  Southeast  University  (Natural  Science
                 pollution control[J]. New Chemical Materials, 2019, 47(5): 235-239.     Edition) (东南大学学报:  自然科学版), 2005, 35(4): 615-618.
            [10]  YU J G, ZHANG X W, WANG D, et al. Adsorption of methyl orange   [21]  HAQUE E, JUN J W, JHUNG S H. Adsorptive removal of methyl
                 dye onto biochar adsorbent prepared from chicken manure[J]. Water     orange  and  methylene  blue  from  aqueous  solution  with  a
                 Science & Technology, 2018, 77(5): 1303-1312.     metal-organic framework material, iron terephthalate (MOF-235)[J].
            [11]  MUBARAK  N  M,  FO  Y  T,  AL-SALIM  H  S,  et al.  Removal  of     Journal of Hazardous Materials, 2011, 185(1): 507-511.


            (上接第 1326 页)                                           Chromatography A, 2013, 1297(13): 96-105.
                                                               [44]  AGGEBRANDT L, SAMUELSON O. Penetration of water-soluble
            [38]  XUE S, ZHANG P, BAO J, et al. Comparison of mercury intrusion   solutes into cellulose films[J]. Journal of Applied Polymer Science,
                 porosimetry  and  multi-scale  X-ray  CT  on  characterizing  the   1965, 9(2): 639-650.
                 microstructure  of  heat-treated  cement  mortar[J].  Materials   [45]  NGUYEN K L, WERNERT V, LOPES A M, et al. Effect of tortuosity
                 Characterization, 2020, 160: 110085.              on diffusion of polystyrenes through chromatographic columns filled
            [39]  VITAS S, SEGMEHL J S, BURGERT I, et al. Porosity and pore size   with  fully  porous  and  porous-shell  particles  and  monoliths[J].
                 distribution  of  native  and  delignified  beech  wood  determined  by   Microporous and Mesoporous Materials, 2020, 293: 109776.
                 mercury intrusion porosimetry[J]. Materials, 2019, 12(3): 416-428.     [46]  LI M, LI Y, YU L, et al. Characterization of poly(allylamine) as a
            [40]  ZUENA M, TOMASIN P, ALBERGHINA M F, et al. Comparison   polymeric  ligand  for  ion-exchange  protein  chromatography[J].
                 between  mercury  intrusion  porosimetry  and  nuclear  magnetic   Journal of Chromatography A, 2017, 1486: 103-109.
                 resonance  relaxometry  to  study  the  pore  size  distribution  of   [47]  KOBAYASHI  A,  NAKAZA  T,  HIRANO  T,  et al.  Variation  in  the
                 limestones treated with a new consolidation product[J]. Measurement,   chromatographic,  material,  and  chemical  characteristics  of
                 2019, 143: 234-245.                               methacrylate-based  polymer  monoliths  during  photoinitiated
            [41]  HARADA  M,  NAKAMURA  T,  YANO  K.  Evaluating  the  internal   low-temperature  polymerization[J].  Journal  of  Separation  Science,
                 structure of monodispersed mesoporous silica spheres by small-angle   2016, 39(13): 2459-2465.
                 X-ray scattering[J]. Colloid and Interface Science Communications,   [48]  SCHULTZE-JENA  A,  BOON  M  A,  DE  WINTER  D  A  M,  et al.
                 2019, 33: 100203.                                 Predicting  intraparticle  diffusivity  as  function  of  stationary  phase
            [42]  GRZVWINSKI  D,  SZUMSKI  M,  BUSZEWSKI  B.  Polymer   characteristics  in  preparative  chromatography[J].  Journal  of
                 monoliths  with  silver  nanoparticles-cholesterol  conjugate  as   Chromatography A, 2020, 1613: 460688.
                 stationary phases for capillary liquid chromatography[J]. Journal of   [49]  BHAMBURE  R,  GILLESPIE  C  M,  PHILLIPS  M,  et al.  Ionic
                 Chromatography A, 2017, 1526: 93-103. .           strength-dependent  changes  in  tentacular  ion  exchangers  with
            [43]  WU Y, SIMONS J, HOOSON S, et al. Protein and virus-like particle   variable  ligand  density.  I.  Structural  properties[J].  Journal  of
                 adsorption  on  perfusion  chromatography  media[J].  Journal  of   Chromatography A, 2016, 1463: 90-101.
   141   142   143   144   145   146   147   148   149   150   151