Page 81 - 《精细化工》2020年第8期
P. 81
第 8 期 周天滋,等: 钨掺杂二氧化钒/石墨烯复合物的制备及性能 ·1579·
表面积大幅下降,从而降低其导热系数 [28] 。(2)研 Materials Today, 2019, 22(2): 35-49.
[9] PENG Z F, WANG Y, DU Y Y, et al. Phase transition and IR
究发现,石墨烯片的热导率与其表面缺陷和边缘粗
properties of tungsten-doped vanadium dioxide nanopowders[J].
糙程度有关 [29] ,而当石墨烯复合量相对于二氧化钒粒 Journal of Alloys and Compounds, 2009, 480(2): 537-540.
[10] PERGAMEN A, STEFANOVICH G, BEREZINA O, et al. Electrical
子过多时,其表面缺陷相对增多,导致导热系数下降。
conductivity of tungsten doped vanadium dioxide obtained by the
sol-gel technique[J]. Thin Solid Films, 2013, 531: 572-576.
3 结论 [11] SHI J Q, ZHOU S X, BO Y, et al. Preparation and thermochromic
property of tungsten-doped vanadium dioxide particles[J]. Solar
(1)通过水热法制备了钨掺杂二氧化钒/石墨烯 Energy Materials and Solar Cells, 2007, 91(19): 1856-1862.
[12] ZHU M D, WANG H, WANG B, et al. New route for modification of
复合物。所制备的二氧化钒为 M 晶型,具有特殊的 thermochromic properties of vanadium dioxide films via high-energy
可逆相变特性,且晶型较好无其他杂峰,钨元素成 X-ray irradiation[J]. Ceramics International, 2018, 45(2): 1661-1669.
[13] TAN L Y ( 谭祾月 ). Preparation and thermal conductivity of
功掺杂进二氧化钒中。石墨烯复合后的钨掺杂二氧 functionalized graphene films[D]. Harbin: Harbin Institute of Technology
化钒对比于未复合的材料粒径减小,团聚情况得到 (哈尔滨工业大学), 2018.
[14] LI C H (李承花), ZHANG Y (张奕), ZUO Q H (左琴华), et al.
有效改善,并且均匀地负载在石墨烯表面。 Application of differential scanning calorimeter[J]. Analytical
(2)随着钨掺杂量的增加,钨掺杂二氧化钒/ Instrumentation (分析仪器), 2015, (4): 88-94.
[15] JAYALAKSHMI T, NAGARAJU K, NAGARAJU G, et al. Enhanced
石墨烯复合粉体的相变温度随之降低,一定量的二 lithium storage of mesoporous vanadium dioxide(B) nanorods by
氧化钒所能接受的掺杂原子是有限的,并不是掺杂 reduced graphene oxide support[J]. Journal of Energy Chemistry,
2018, 27(1): 183-189.
剂用量越多相变温度就会越低。本实验中,通过掺
[16] JI C H, WU Z M, WU X F, et al. Terahertz transmittance and metal-
杂所达到的最低相变温度为 32.2 ℃,非常接近室 insulator phase transition properties of M2 phase VO 2 films induced by
Cr doping[J]. Applied Surface Science, 2018, 455: 622-628.
温,能达到预期目标并满足应用要求。
[17] LIANG Z H, ZHAO L, WANG S M. Recent progress in modified
(3)随着石墨烯含量的增加,钨掺杂二氧化钒 and application of vanadium doxide[J]. Material Guide, 2015, 29(15):
石墨烯/复合涂层的导热系数先增加再减小,当氧化 118-122.
[18] QIU B, ZHAO X Y, XIA D G. In situ synthesis of CoS 2/RGO
石墨烯含量(以 V 2O 5 质量为基准)为 4%时可以达到 nanocomposites with enhanced electrode performance for lithium-ion
最大值 16.341 W/(m·K),能有效提升涂层的散热效果。 batteries[J]. Journal of Alloys and Compounds, 2013, 579: 372-376.
[19] ZHANG H F, WU Z M, WU X F, et al. Transversal grain size effect
综上所述,钨掺杂二氧化钒/石墨烯复合材料的 on the phase-transition hysteresis width of vanadium dioxide films
综合性能优异,有望用作智能隔热涂层,满足良好 comprising spheroidal nanoparticles[J]. Vacuum, 2014, 104: 47-50.
[20] KANG X J, ZHANG J M, SUN X W, et al. One-pot synthesis of
的隔热性与高导热性等要求。 vanadium dioxide nanoflowers on graphene oxide[J]. Ceramics
International, 2016, 42(6): 7883-7887.
参考文献: [21] LEE M, WEE B, HONG J, et al. High performance flexible
supercapacitor electrodes composed of ultralarge graphene sheets and
[1] BABULANAM S M, ERIKSSON T S, NIKLASSON G A, et al.
Thermochromic VO 2 films for energy-efficient windows[J]. Solar vanadium dioxide[J]. Advanced Energy Materials, 2015, 5(7): 140-149.
Energy Materials, 2018, 16(5): 347-363. [22] NETHRAVATHI C, VISWANATH B, MICHAEL J, et al. Hydrothermal
[2] LI B, TIAN S Q, TAO H Z, et al. Tungsten doped M-phase VO 2 synthesis of a monoclinic VO 2 nanotube-graphene hybrid for use as
mesoporous nanocrystals with enhanced comprehensive thermochromic cathode material in lithium ion batteries[J]. Carbon, 2012, 50(13):
properties for smart windows[J]. Ceramics International, 2019, 45(4): 4839-4846.
342-350. [23] SONG Q, PANG H C, GONG W T, et al. Enhancing phase-
[3] LIANG Z H, ZHAO L, MENG W F, et al. Tungsten-doped vanadium transition sensitivity of tungsten-doped vanadium dioxide by high-
dioxide thin films as smart windows with self-cleaning and energy- temperature annealing[J]. Materials Letters, 2015, 161: 244-247.
saving functions[J]. Journal of Alloys and Compounds, 2017, 694: [24] BHUNIA M M, DAS S, CHATTOPADHYAY K K. Enhanced heat
124-131. transfer properties of RGO-TiO2 based ethylene glycol nanofluids[J].
[4] ZHU M D, WANG H, LI C, et al. Thickness- modulated Materials Today: Proceedings, 2019, 18: 1096-1107.
thermochromism of vanadium dioxide thin films grown by [25] DENG L J, ZHANG G N, KANG L P, et al. Graphene/VO 2 hybrid
magnetron sputtering[J]. Surface and Coatings Technology, 2019, material for high performance electrochemical capacitor[J].
359: 396-402. Electrochimica Acta, 2013, 112: 448-457.
[5] GUO B B, CHEN L L, SHI S Q, et al. Low temperature fabrication [26] DUAN Y P, LIU Y, CUI Y L, et al. Graphene to tune microwave
of thermochromic VO 2 thin films by low-pressure chemical vapor absorption frequencies and enhance absorption properties of carbonyl
deposition[J]. RSC Adv, 2017, 7(18): 10798-10805. iron/polyurethane coating[J]. Progress in Organic Coatings, 2018,
[6] HUANG Y, ZHANG D P, LIU Y, et al. Phase transition analysis of 125: 89-98.
thermochromic VO 2, thin films by temperature-dependent raman [27] ZHI X L, YAN H X, GU B, et al. Preparation and application of
scattering and ellipsometry[J]. Applied Surface Science, 2018, 456: graphene nanocomposite multilayer films[J]. Materials Review,
545-551. 2015, 29(21): 145-150.
[7] JUNGDAE H, SOHYEON S, AHNJAE S, et al. Low temperature [28] CHENG Y S (程源晟). Synthesis and electrocatalytic properties of
growth of amorphous VO 2 films on flexible polyimide substrates with composites based on multidimensional graphene materials[D].
a TiO 2 buffer layer[J]. Journal of Vacuum Science & Technology, 2018, Maanshan: Anhui University of Technology (安徽工业大学), 2018.
36(3): 102-114. [29] BAI S L (白树林), ZHAO Y H (赵云红). Thermal properties and
[8] LI J H, LIU W, ZHANG X L, et al. Temperature-responsive characterization techniques of graphene[J]. Advances in Mechanics
tungsten doped vanadium dioxide thin film starves bacteria to death[J]. (力学进展), 2014, 44(5): 236-259.