Page 133 - 《精细化工》2021年第1期
P. 133
第 1 期 张大琴,等: 基于蛋壳膜基碳点合成 Ag/E-CDs/Fe 3 O 4 及其催化还原性能 ·123·
–
(C 6 H 4 NO 3 ),生成 4-AP [28] 。E-CDs/Fe 3 O 4 和 Ag 单 by Fe/Fe 2O 3 core-shell nanowires[J]. Elsevier Science, 2019, 282: 13-22.
[7] ZHANG B, LI F, WU T, et al. Adsorption of p-nitrophenol from
质的协同作用促进了这一电子传递过程,从而加速 aqueous solutions using nanographite oxide[J]. Colloids and Surfaces
了 4-NP 的降解。 A-Physicochemical and Engineering Aspects, 2015, 464: 78-88.
[8] LU H F, WANG W, XIAO Z Q, et al. Facile synthesis of MCM-41/
nano zero-valent iron composite for catalytic reduction of p-nitrophenol[J].
Journal of Porous Materials, 2015, 22(6): 1559-1565.
[9] ZHU X P, NI J R. Simultaneous processes of electricity generation
and p-nitrophenol degradation in a microbial fuel cell[J]. Electrochemistry
Communications, 2009, 11(2): 274-277.
[10] ZHANG X R, ZHANG Z X, LI Y F, et al. Preparation of
graphene-Co/Ni/Fe 3O 4 nanocomposites and their electrocatalytic
activity for reduction of p-nitrophenol[J]. Journal of Nanoscience and
Nanotechnology, 2020, 20(4): 2592-2597.
[11] ADITYA T, PAL A, PAL T. Nitroarene reduction: A trusted model
reaction to test nanoparticle catalysts [J]. Chemical Communications,
2015, 51(46): 9410-9431.
[12] XUAN S H, HAO L Y, JIANG W Q, et al. A facile method to
fabricate carbon-encapsulated Fe 3O 4 core/shell composites[J].
Nanotechnology, 2007, 18(3): 035602.
[13] SOARES O S G P, RODRIGUES C S D, MADEIRA L M, et al.
Heterogeneous Fenton-like degradation of p-nitrophenol over
图 9 ECIA 催化还原 4-NP 反应机理示意图 tailored carbon-based materials[J]. Catalysts, 2019, 9(3): 258.
Fig. 9 Schematic diagram of reaction mechanism of ECIA [14] GUO Y L, ZHANG L L, LIU X Y, et al. Synthesis of magnetic core-
catalytic reduction of 4-NP shell carbon dot@MFe 2O 4 (M = Mn, Zn and Cu) hybrid materials
and their catalytic properties[J]. Mater Chem A, 2016, 4: 4044-4055.
3 结论 [15] KARUPPAIAH M, SAKTHIVEL P, ASAITHAMBI S, et al. Formation
of one dimensional nanorods with microsphere of MnCO 3 using Ag
as dopant to enhance the performance of pseudocapacitors[J]. Materials
(1)以废弃的鸡蛋壳膜为原料,水热合成碳量 Chemistry and Physics, 2019, 228: 1-8.
[16] ESSNER J B, LABER C H, BAKER G A. Carbon dot reduced
子点,利用 E-CDs 还原性,以 E-CDs 为还原剂,采 bimetallic nanoparticles: Size and surface plasmon resonance tunability
for enhanced catalytic applications[J]. Journal of Materials Chemistry A,
用水热和光催化两步法合成了 E-CDs/Ag/Fe 3 O 4 复合 2015, 3(31): 16354-16360.
+
物,实现了 E-CDs/Fe 3 O 4 的一步合成以及 Ag 原位还 [17] DE B, VOIT B, KARAK N. Carbon dot reduced Cu 2O nanohybrid/
hyperbranched epoxy nanocomposite: Mechanical, thermal and
原负载到复合物 E-CDs/Fe 3 O 4 表面,表明 E-CDs 具 photocatalytic activity[J]. RSC Advances, 2014, 4(102): 58453-58459.
有良好的还原性能。 [18] CHEN D J, LI S X, XUN B Y, et al. Polycrystalline iron oxide
nanoparticles prepared by C-dot-mediated aggregation and reduction for
(2)以制备的 E-CDs/Ag/Fe 3 O 4 复合物为催化 supercapacitor application[J]. RSC Advances, 2016, 6(51): 45023-45030.
剂,4-NP 为模型污染物,研究了复合物的催化还原 [19] SHARMA S, UMAR A, MEHTA S K, et al. Solar light driven
photocatalytic degradation of levofloxacin using TiO 2/carbon-dot
性能。ECIA 复合材料对水体中 4-NP 的还原降解具 nanocomposites[J]. New Journal of Chemistry, 2018, 42(9): 7445-7456.
有良好的催化效果。 [20] WANG H, WEI Z Y, MATSUI H, et al. Fe 3O 4/carbon quantum dots
hybrid nanoflowers for highly active and recyclable visible-light
(3)室温下,复合物中含 Ag 量、催化剂量、4-NP driven photocatalyst[J]. Journal of Materials Chemistry A, 2014,
2(38): 15740-15745.
初始浓度对 4-NP 催化还原降解均有影响。在 4-NP [21] MU Y L, WANG L, ZHAO Y, et al. 3D flower-like MnCO 3
(20 mL,1 mmol/L)和 NaBH 4 (20 mL,0.3 mol/L) microcrystals: Evolution mechanisms of morphology and enhanced
electrochemical performances[J]. Electrochimica Acta, 2017, 251:
混合溶液中,添加 20 mg ECIA-2(其中 AgNO 3 用量 119-128.
为 2 mg)对 4-NP 的催化活性最佳,催化还原符合 [22] GATEMALA H, KOSAANG S, SAWANGPHRUK M. Bifunctional
electrocatalytic CoNi-doped manganese oxide produced from
–1
一级动力学反应,该反应的 k i 为 0.6441 min 。 microdumbbell manganese carbonate towards oxygen reduction and
oxygen evolution reactions[J]. Sustainable Energy & Fuels, 2018,
参考文献: 2(6): 1170-1177.
[23] XING R M, LI R, XU Y X, et al. Hydrothermal-assisted homogeneous
[1] REN J, LI H X, LI N, et al. A three-dimensional electrode precipitation synthesis of dumbbell-like MnCO 3 nanostructures[J].
bioelectrochemical system for the advanced oxidation of 4-nitrophenol in Ceramics International, 2017, 43(16): 14426-14430.
an aqueous solution[J]. RSC Advances, 2020, 10(29): 17163-17170. [24] TANG Y Q, LU Y C, LUO G S. Synthesis of micro-nano-assembled
[2] YANG L X, LUO S L, LI Y, et al. High efficient photocatalytic manganese carbonate via aqueous precipitation assisted by ethanol[J].
degradation of p-nitrophenol on a unique Cu 2O/TiO 2 p-n heterojunction Industrial & Engineering Chemistry Research, 2017, 56(36): 10036-
network catalyst[J]. Environ Sci Technol, 2010, 44(19): 7641-7646. 10043.
[3] LI J, JI Q Q, LAI B, et al. Degradation of 4-nitrophenol by Fe-0/H 2O 2/ [25] JIA A G, LUO G C, WU H P, et al. Cotton fiber-biotemplated
persulfate system: Optimization, performance and mechanisms[J]. synthesis of Ag fibers: Catalytic reduction for 4-nitrophenol and
Journal of Taiwan Institute of Chemical Engineers, 2017, 80: 686-694. SERS application[J]. Solid State Sciences, 2019, 94: 120-126.
[4] WANG R, ZHANG M, GE B C, et al. Facile preparation of black [26] LIN H L, SOU N L, HUANG G G. Single-step preparation of recyclable
phosphorus-based rGO-B4-Pd composite hydrogels with enhanced silver nanoparticle immobilized porous glass filters for the catalytic
catalytic reduction of 4-nitrophenol performances for wastewater reduction of nitroarenes[J]. RSC Advances, 2015, 5: 19248-19254.
treatment[J]. Journal of Molecular Liquids, 2020, 310: 113083. [27] ZHANG K H, WANG C W, RONG Z, et al. Silver coated magnetic
[5] WAN D, LI W B, WANG G H, et al. Degradation of 4-nitrophenol microflowers as efficient and recyclable catalysts for catalytic
using magnetic Fe-0/Fe 3O 4/Coke composite as a heterogeneous Fenton- reduction[J]. New Journal of Chemistry, 2017, 41: 14199-14208.
like catalyst[J]. Science of the Total Environment, 2017, 574: 1326-1334. [28] BARUAH B. In situ and facile synthesis of silver nanoparticles on
[6] LUO H W, ZHAO Y Y, HE D Q, et al. Hydroxylamine-facilitated baby wipes and their applications in catalysis and SERS[J]. RSC
degradation of rhodamine B(RhB) and 4-nitrophenol (PNP) as catalyzed Advances, 2016, 6: 5016-5023.