Page 31 - 《精细化工》2021年第1期
P. 31

第 1 期                          黄仕元,等:  铁酸铋光催化剂改性的研究进展                                     ·21·


                 GUO 等  [54] 结合溶胶-凝胶法与快速退火法合成                  [5]   ZHANG J (张佳), WANG G X (王国祥), XIA M F (夏明芳), et al.
                 3+
                                               3+
            了 Gd 掺杂的 BiFeO 3 。研究证明,Gd 掺杂提高了                        Optimization of degradation  of sulfadiazine by electrochemical
                                                                   oxidation process[J]. Fine Chemicals (精细化工), 2014, 31(8):
            光催化剂内部空间电荷密度及载流子转移和分离速                                 991-997.
            率,催化剂表现出较好的光催化活性。稀土金属离                             [6]   SAZALI M S,  YAAKOB M K, MOHAMED Z,  et al.
                                                                   Chitosan-assisted hydrothermal synthesis of multiferroic BiFeO 3:
            子掺杂使催化剂晶格畸变并引入缺陷位点捕获电                                  Effects  on  structural,  magnetic and optical  properties[J]. Resultsin
            子,提高了光量子效率,增强了对可见光的敏化。                                 Physics, 2019, 15: 102740-102744.
            但掺杂浓度过高时也容易引起光催化剂表面的活性                             [7]   RONG  Q  Y, XIAO W Z, XIAO  G,  et al. Magnetic properties  in
                                                                   BiFeO 3 doped with Cu and Zn first-principles investigation[J].
            缺陷位点转变为局部复合中心,降低载流子的分离                                 Journal of Alloys and Compounds, 2016, 674: 463-469.
            速率,使光催化活性减弱。                                       [8]   BERA S, GHOSH S, SHYAMAL S, et al. Photocatalytic hydrogen
                                                                   generation using  gold decorated BiFeO 3 heterostructures as an
                 综上所述,金属离子掺杂提高铁酸铋光催化性                              efficient catalyst under visible light  irradiation[J]. Solar Energy
            能的原因可总结如下:(1)掺杂使晶体结构畸变,                                Materials and Solar Cells, 2019, 194: 195-206.
            形成表面缺陷,并加剧内部电荷分布的不均匀性,                             [9]   YANG Y C, LIU Y, WEI J H, et al. Electrospun nanofibers of p-type
                                                                   BiFeO 3/n-type TiO 2 heterojunctions  with enhanced visible-light
            有助于生成更多的氧化活性位点;(2)掺杂会在催                                photocatalytic activity[J]. RSC Advances, 2014, 4(60): 31941-
            化剂禁带中产生杂质能级,提高光子激发能量,降                                 31947.
                                                                                                       3+
                                                               [10]  IRFAN S, RIZWAN S, SHEN Y, et al. The gadolinium (Gd ) and tin
            低带隙,增强对可见光的利用率;(3)形成捕获中                                (Sn ) co-doped BiFeO 3 nanoparticles as new solar light active
                                                                     4+
            心,加快光致载流子跃迁速率,抑制电子-空穴的复                                photocatalyst[J]. Scientific Reports, 2017, 7: 42493-42504.
            合。目前,在光催化领域,金属离子掺杂铁酸铋的                             [11]  GUAN X Y (关晓英). Synthesis, doping and property investigation
                                                                   of BiFeO 3  powders[D].  Urumqi: Xinjiang University (新疆大学),
            研究多集中于单一金属离子或单一位点掺杂,未来                                 2015.
            需要进一步探讨多元状态下金属离子掺杂对铁酸铋                             [12]  LIU H F (刘浩飞). Preparation and properties of multiferroic BiFeO 3
                                                                   materials[D]. Kunming: Kunming University of Science and
            光催化性能的影响,分析不同金属离子间的协同作
                                                                   Technology (昆明理工大学), 2015.
            用,更好地阐明催化反应机制。                                     [13]  HAO C X (郝春雪). The photocatalytic and magnetic properties of
                                                                   BiFeO 3 through three kinds of methods[D]. Qinhuangdao: Yanshan
            3   结语与展望                                              Universit (燕山大学), 2013.
                                                               [14]  SHI X F (史学峰). Preparation of anchoring on BiFeO 3 catalyst and
                                                                   its catalytic performance[D]. Shenyang: Shenyang University of
                 通过对铁酸铋的改性有效抑制了光致载流子的                              Technology (沈阳工业大学), 2019.
            复合,增强了可见光响应范围,显著改善了铁酸铋                             [15]  CHEN Q (陈强). Synthesis and photoelectrochemistry properties of
            的光催化性能。但目前对铁酸铋的探索认识还处于                                 visible light photocatalyst of bismuth ferrite compound[D]. Wuhan:
                                                                   Hubei University (湖北大学), 2016.
            初步阶段,未来仍需要更深入的研究:(1)设计并                            [16]  LU H D,  DU  Z  Y, WANG J X,  et al. Enhanced photocatalytic
            制备纳米棒、纳米纤维、纳米管等实用性更强的多                                 performance of Ag-decorated BiFeO 3 in visible light  region[J].
                                                                   Journal of Sol-Gel Science and Technology, 2015, 76(1): 50-57.
            维纳米结构光催化剂。开发经济环保,光稳定性强                             [17]  NIU F, CHEN D, QIN  L S,  et al. Synthesis of Pt/BiFeO 3
            的改性材料,拓展铁酸铋在光催化分解水制氢、还                                 heterostructured photocatalysts for highly efficient visible-light
            原 CO 2 等领域的应用研究。(2)深入研究铁酸铋复                            photocatalytic performances[J]. Solar Energy Materials and Solar
                                                                   Cells, 2015, 143: 386-396.
            合物的光催化机理,系统分析并揭示界面及能带结                             [18]  JAFFARI Z H, LAM S M, SIN J C, et al. Magnetically recoverable
            构特性,稳步提高光子转换效率和光催化活性。                                  Pd-loaded BiFeO 3 microcomposite  with enhanced  visible light
                                                                   photocatalytic performance for pollutant, bacterial and fungal
            参考文献:                                                  elimination[J]. Separation and  Purification Technology, 2020, 236:
                                                                   116195-116256.
            [1]   XIAN G, NIU  L J, ZHANG G  M,  et al. Anefficient CuO-γ        [19]  LIU Y Z, DING S S, XU J, et al. Preparation of a p-n heterojunction
                 Fe 2O 3  composite activates persulfate for organic pollutants   BiFeO 3@TiO 2 photocatalyst with  a core-shell structure for
                 removal: Performance, advantages and mechanism[J]. Chemosphere,   visible-light  photocatalytic degradation[J]. Chinese Journal  of
                 2020, 242: 125191-125200.                         Catalysis, 2017, 38(6): 1052-1062.
            [2]   SUN Z Q (孙志强),  YUAN D (袁东), HAN G Y (韩广业),  et al.   [20]  FAN T, CHEN C C, TANG Z H, et al. Synthesis and characterization
                 Research on the efficiency and mechanism of the treatment of waste   of g-C 3N 4/BiFeO 3 composites with an  enhanced visible light
                 water from disperse dye production by ozone oxidation[J]. Industrial   photocatalytic activity[J]. Materials Science in Semiconductor
                 Water Treatment (工业水处理), 2020, 40(1): 29-32, 111.     Processing, 2015, 40: 439-445.
            [3]   DU X Y, BAI X, XU L, et al. Visible-light activation of persulfate by     [21]  WANG  X F, MAO W W, ZHANG J,  et al. Facile fabrication of
                 TiO 2/g-C 3N 4  photocatalyst toward efficient degradation of   highly efficient  g-C 3N 4/BiFeO 3 nanocomposites with enhanced
                 micropollutants[J]. Chemical Engineering Journal, 2020, 384:   visible light photocatalytic activities[J]. Journal of Colloid and
                 123245-12358.                                     Interface Science, 2015, 448: 17-23.
            [4]   MA X H, ZHAO  L, DONG  Y H. Oxidation  degradation of  2,2′,   [22]  ZOU C Y, LIU S Q, SHEN Z M, et al. Efficient removal of ammonia
                 5-trichlorodiphenyl in a chelating agent enhanced Fenton   with a novel graphene-supported BiFeO 3 as a reusable photocatalyst
                 reaction: Influencing factors, products, and pathways[J]. Chemosphere,   under visible light[J]. Chinese Journal of Catalysis, 2017, 38(1):
                 2020, 246: 125849-125860.                         20-28.
   26   27   28   29   30   31   32   33   34   35   36