Page 31 - 《精细化工》2021年第1期
P. 31
第 1 期 黄仕元,等: 铁酸铋光催化剂改性的研究进展 ·21·
GUO 等 [54] 结合溶胶-凝胶法与快速退火法合成 [5] ZHANG J (张佳), WANG G X (王国祥), XIA M F (夏明芳), et al.
3+
3+
了 Gd 掺杂的 BiFeO 3 。研究证明,Gd 掺杂提高了 Optimization of degradation of sulfadiazine by electrochemical
oxidation process[J]. Fine Chemicals (精细化工), 2014, 31(8):
光催化剂内部空间电荷密度及载流子转移和分离速 991-997.
率,催化剂表现出较好的光催化活性。稀土金属离 [6] SAZALI M S, YAAKOB M K, MOHAMED Z, et al.
Chitosan-assisted hydrothermal synthesis of multiferroic BiFeO 3:
子掺杂使催化剂晶格畸变并引入缺陷位点捕获电 Effects on structural, magnetic and optical properties[J]. Resultsin
子,提高了光量子效率,增强了对可见光的敏化。 Physics, 2019, 15: 102740-102744.
但掺杂浓度过高时也容易引起光催化剂表面的活性 [7] RONG Q Y, XIAO W Z, XIAO G, et al. Magnetic properties in
BiFeO 3 doped with Cu and Zn first-principles investigation[J].
缺陷位点转变为局部复合中心,降低载流子的分离 Journal of Alloys and Compounds, 2016, 674: 463-469.
速率,使光催化活性减弱。 [8] BERA S, GHOSH S, SHYAMAL S, et al. Photocatalytic hydrogen
generation using gold decorated BiFeO 3 heterostructures as an
综上所述,金属离子掺杂提高铁酸铋光催化性 efficient catalyst under visible light irradiation[J]. Solar Energy
能的原因可总结如下:(1)掺杂使晶体结构畸变, Materials and Solar Cells, 2019, 194: 195-206.
形成表面缺陷,并加剧内部电荷分布的不均匀性, [9] YANG Y C, LIU Y, WEI J H, et al. Electrospun nanofibers of p-type
BiFeO 3/n-type TiO 2 heterojunctions with enhanced visible-light
有助于生成更多的氧化活性位点;(2)掺杂会在催 photocatalytic activity[J]. RSC Advances, 2014, 4(60): 31941-
化剂禁带中产生杂质能级,提高光子激发能量,降 31947.
3+
[10] IRFAN S, RIZWAN S, SHEN Y, et al. The gadolinium (Gd ) and tin
低带隙,增强对可见光的利用率;(3)形成捕获中 (Sn ) co-doped BiFeO 3 nanoparticles as new solar light active
4+
心,加快光致载流子跃迁速率,抑制电子-空穴的复 photocatalyst[J]. Scientific Reports, 2017, 7: 42493-42504.
合。目前,在光催化领域,金属离子掺杂铁酸铋的 [11] GUAN X Y (关晓英). Synthesis, doping and property investigation
of BiFeO 3 powders[D]. Urumqi: Xinjiang University (新疆大学),
研究多集中于单一金属离子或单一位点掺杂,未来 2015.
需要进一步探讨多元状态下金属离子掺杂对铁酸铋 [12] LIU H F (刘浩飞). Preparation and properties of multiferroic BiFeO 3
materials[D]. Kunming: Kunming University of Science and
光催化性能的影响,分析不同金属离子间的协同作
Technology (昆明理工大学), 2015.
用,更好地阐明催化反应机制。 [13] HAO C X (郝春雪). The photocatalytic and magnetic properties of
BiFeO 3 through three kinds of methods[D]. Qinhuangdao: Yanshan
3 结语与展望 Universit (燕山大学), 2013.
[14] SHI X F (史学峰). Preparation of anchoring on BiFeO 3 catalyst and
its catalytic performance[D]. Shenyang: Shenyang University of
通过对铁酸铋的改性有效抑制了光致载流子的 Technology (沈阳工业大学), 2019.
复合,增强了可见光响应范围,显著改善了铁酸铋 [15] CHEN Q (陈强). Synthesis and photoelectrochemistry properties of
的光催化性能。但目前对铁酸铋的探索认识还处于 visible light photocatalyst of bismuth ferrite compound[D]. Wuhan:
Hubei University (湖北大学), 2016.
初步阶段,未来仍需要更深入的研究:(1)设计并 [16] LU H D, DU Z Y, WANG J X, et al. Enhanced photocatalytic
制备纳米棒、纳米纤维、纳米管等实用性更强的多 performance of Ag-decorated BiFeO 3 in visible light region[J].
Journal of Sol-Gel Science and Technology, 2015, 76(1): 50-57.
维纳米结构光催化剂。开发经济环保,光稳定性强 [17] NIU F, CHEN D, QIN L S, et al. Synthesis of Pt/BiFeO 3
的改性材料,拓展铁酸铋在光催化分解水制氢、还 heterostructured photocatalysts for highly efficient visible-light
原 CO 2 等领域的应用研究。(2)深入研究铁酸铋复 photocatalytic performances[J]. Solar Energy Materials and Solar
Cells, 2015, 143: 386-396.
合物的光催化机理,系统分析并揭示界面及能带结 [18] JAFFARI Z H, LAM S M, SIN J C, et al. Magnetically recoverable
构特性,稳步提高光子转换效率和光催化活性。 Pd-loaded BiFeO 3 microcomposite with enhanced visible light
photocatalytic performance for pollutant, bacterial and fungal
参考文献: elimination[J]. Separation and Purification Technology, 2020, 236:
116195-116256.
[1] XIAN G, NIU L J, ZHANG G M, et al. Anefficient CuO-γ [19] LIU Y Z, DING S S, XU J, et al. Preparation of a p-n heterojunction
Fe 2O 3 composite activates persulfate for organic pollutants BiFeO 3@TiO 2 photocatalyst with a core-shell structure for
removal: Performance, advantages and mechanism[J]. Chemosphere, visible-light photocatalytic degradation[J]. Chinese Journal of
2020, 242: 125191-125200. Catalysis, 2017, 38(6): 1052-1062.
[2] SUN Z Q (孙志强), YUAN D (袁东), HAN G Y (韩广业), et al. [20] FAN T, CHEN C C, TANG Z H, et al. Synthesis and characterization
Research on the efficiency and mechanism of the treatment of waste of g-C 3N 4/BiFeO 3 composites with an enhanced visible light
water from disperse dye production by ozone oxidation[J]. Industrial photocatalytic activity[J]. Materials Science in Semiconductor
Water Treatment (工业水处理), 2020, 40(1): 29-32, 111. Processing, 2015, 40: 439-445.
[3] DU X Y, BAI X, XU L, et al. Visible-light activation of persulfate by [21] WANG X F, MAO W W, ZHANG J, et al. Facile fabrication of
TiO 2/g-C 3N 4 photocatalyst toward efficient degradation of highly efficient g-C 3N 4/BiFeO 3 nanocomposites with enhanced
micropollutants[J]. Chemical Engineering Journal, 2020, 384: visible light photocatalytic activities[J]. Journal of Colloid and
123245-12358. Interface Science, 2015, 448: 17-23.
[4] MA X H, ZHAO L, DONG Y H. Oxidation degradation of 2,2′, [22] ZOU C Y, LIU S Q, SHEN Z M, et al. Efficient removal of ammonia
5-trichlorodiphenyl in a chelating agent enhanced Fenton with a novel graphene-supported BiFeO 3 as a reusable photocatalyst
reaction: Influencing factors, products, and pathways[J]. Chemosphere, under visible light[J]. Chinese Journal of Catalysis, 2017, 38(1):
2020, 246: 125849-125860. 20-28.