Page 62 - 《精细化工》2021年第1期
P. 62

·52·                              精细化工   FINE CHEMICALS                                 第 38 卷

            比表面积较小、催化性能不高的问题,可通过对其                                 modulators[J]. Polymer Chemistry, 2020, 11(27): 4464-4468.
                                                               [14]  XIAO P T, XU Y X. Recent progress in two-dimensional polymers
            功能化形成复合材料以增强电催化活性。
                                                                   for energy storage and conversion: Design, synthesis, and applications[J].
                (4)在利用炭化将亚胺 COFs 材料进行复合时,                          Journal of Materials Chemistry A, 2018, 6(44): 21676-21695.
            通过控制炭化过程中不同组分的形成和均匀分布以                             [15]  EL-KADERI H M, HUNT J R, MENDOZA-CORTES J L, et al.
                                                                   Designed synthesis of 3D covalent organic frameworks[J]. Science,
            及同步优化复合材料的局部结构(包括孔隙率和电                                 2007, 316(5822): 268-272.
            导率)来协同增强电催化活性仍存在挑战。                                [16]  LU W G, WEI Z W, GU Z Y, et al. Tuning the structure and function
                                                                   of metal-organic frameworks via linker design[J]. Chemical Society
                (5)亚胺 COFs 表面或通道内活性位点的电催
                                                                   Reviews, 2014, 43(16): 5561-5593.
            化活性可能不同,对于其电催化机理的研究还需深                             [17]  CUI X, LEI S, WANG  A C, et  al. Emerging covalent organic
            入探究。                                                   frameworks tailored materials for electrocatalysis[J]. Nano Energy,
                                                                   2020, 70: 104525.
                (6)若要从根本上研究结构和组成是如何影响                          [18]  KONDRATENKO E V, MUL G, BALTRUSAITIS J, et al. Status and
            电催化性能,有必要确定亚胺 COFs 结构上的催化                              perspectives of CO 2 conversion into fuels and chemicals by catalytic,
                                                                   photocatalytic and electrocatalytic processes[J]. Energy & Environmental
            位点和化学反应途径。
                                                                   Science, 2013, 6(11): 3112-3135.
                 随着人们对亚胺 COFs 在电催化领域不断地发                       [19]  ARESTA M,  DIBENEDETTO A, ANGELINI A. Catalysis for the
            掘和认识,亚胺 COFs 材料作为电催化剂在过去几                              valorization of exhaust carbon: From CO 2 to chemicals,  materials,
                                                                   and fuels. Technological use of CO 2[J]. Chemical Reviews, 2014,
            年中取得了巨大成就,这为该新型多功能电催化材                                 114(3): 1709-1742.
            料的广阔应用与开发奠定了基础。                                    [20]  LIM R J, XIE M S, SK M A, et al. A review on the electrochemical
                                                                   reduction of CO 2  in fuel cells,  metal electrodes and molecular
            参考文献:                                                  catalysts[J]. Catalysis Today, 2014, 233: 169-180.
                                                               [21]  WANG  B, YANG F L, DONG  Y P, et al. Cu@porphyrin-COFs
            [1]   SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory   nanorods for efficiently photoelectrocatalytic reduction  of CO 2[J].
                 and experiment in electrocatalysis: Insights into materials design[J].   Chemical Engineering Journal, 2020, 396: 125255.
                 Science, 2017, 355(6321): eaad 4998.          [22]  LIN S, DIERCKS C S, ZHANG  Y B, et al. Covalent organic
            [2]   ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials:   frameworks comprising cobalt porphyrins for catalytic CO 2 reduction
                 Controllable synthesis and applications in fuel cells and photocatalysis[J].   in water[J]. Science, 2015, 349(6253): 1208-1213.
                 Energy & Environmental Science, 2012, 5(5): 6717-6731.   [23]  DIERCKS C S, LIN S, KORNIENKO N, et al. Reticular electronic
            [3]   JIN  H Y,  GUO  C X, LIU X, et al. Emerging  two-dimensional   tuning of porphyrin active sites in covalent organic frameworks for
                 nanomaterials for electrocatalysis[J]. Chemical Reviews, 2018,   electrocatalytic carbon dioxide reduction[J]. Journal of the American
                 118(13): 6337-6408.                               Chemical Society, 2018, 140(3): 1116-1122.
            [4]   GAO D, GUO J  N, CUI X, et al. Three-dimensional dendritic   [24]  KARKAS M D,  VERHO O, JOHNSTON E V, et al. Artificial
                 structures of NiCoMo as efficient electrocatalysts for the hydrogen   photosynthesis: Molecular systems for catalytic water oxidation[J].
                 evolution reaction[J]. ACS Applied Materials & Interfaces, 2017,   Chemical Reviews, 2014, 114(24): 11863-12001.
                 9(27): 22420-22431.                           [25]  BERARDI S, DROUET S D, FRANCAS L, et al. Molecular artificial
            [5]   YANG Y, ZHOU M, GUO W L, et al. NiCoO 2 nanowires grown on   photosynthesis[J]. Chemical Society Reviews, 2014, 43(22): 7501-7519.
                 carbon fiber paper for highly efficient water oxidation[J]. Electrochimica   [26]  CHAUHAN M, REDDY K P, GOPINATH C S, et al. Copper cobalt
                 Acta, 2015, 174: 246-253.                         sulfide nanosheets realizing a promising electrocatalytic oxygen
            [6]   CUI X, YANG  Y, LI  Y H, et  al. Electrochemical fabrication of   evolution reaction[J]. ACS Catalysis, 2017, 7(9): 5871-5879.
                                                                                                            3+
                 porous Ni 0.5Co 0.5 alloy film and its enhanced electrocatalytic activity   [27]  LI N, AI L H, JIANG J, et al. Spinel-type oxygen-incorporated Ni
                 towards methanol oxidation[J]. Journal of the Electrochemical   self-doped Ni 3S 4 ultrathin nanosheets for highly efficient and stable
                 Society, 2015, 162(14): F1415-F1424.              oxygen evolution electrocatalysis[J]. Journal of Colloid and Interface
            [7]   CUI X, XIAO P,  WANG J, et al. Highly branched  metal alloy   Science, 2020, 564: 418-427.
                 networks with superior activities for the methanol oxidation reaction[J].   [28]  QIN Q, CHEN L L, WEI T, et al. MoS 2/NiS yolk-shell microsphere-
                 Angewandte Chemie, 2017, 129(16): 4559-4564.      based electrodes  for overall water splitting and asymmetric
            [8]   CUI X, GUO W L, ZHOU M, et  al. Promoting effect of Co in   supercapacitor[J]. Small, 2019, 15(29): 1803639.
                 Ni mCo n (m+n=4) bimetallic electrocatalysts for methanol  oxidation   [29]  ZHUANG G L, GAO  Y F, ZHOU  X, et al. ZIF-67/COF-derived
                 reaction[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 493-503.   highly dispersed  Co 3O 4/N-doped  porous carbon with excellent
            [9]   LIU C H (刘春晖), MA X  L (马晓莉). Latest development of   performance for oxygen evolution reaction and Li-ion batteries[J].
                 covalent organic frameworks[J]. Chemical Industry and Engineering   Chemical Engineering Journal, 2017, 330: 1255-1264.
                 Progress (化工进展), 2019, 38(11): 4978-4990.     [30]  LU Z Y, WANG H T, KONG D S, et al. Electrochemical tuning of
            [10]  WANG T (王婷), XUE  R (薛瑞),  WEI Y  L (魏玉丽), et al.   layered lithium transition metal oxides for improvement of oxygen
                 Development and applications of covalent organic frameworks (COFs)   evolution reaction[J]. Nature Communications, 2014, 5(1): 1-7.
                 materials: Gas storage, catalysis and chemical sensing[J]. Progress in   [31]  TROTOCHAUD L, YOUNG S L, RANNEY J K, et al. Nickel-iron
                 Chemistry (化学进展), 2018, 30(6): 753-764.           oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional
            [11]  LOHSE  M S, BEIN  T. Covalent organic frameworks:  Structures,   and incidental iron incorporation[J]. Journal of the American Chemical
                 synthesis, and applications[J]. Advanced Functional Materials, 2018,   Society, 2014, 136(18): 6744-6753.
                 28(33): 1705553.                              [32]  GE X M, SUMBOJA A, WUU D, et al. Oxygen reduction in alkaline
            [12]  LIU W (刘伟). Preparation  of covalent organic  frameworks and   media: From  mechanisms to recent advances of catalysts[J]. ACS
                 studies on their sensor and catalytic properties[D]. Lanzhou: Lanzhou   Catalysis, 2015, 5(8): 4643-4667.
                 University (兰州大学), 2019.                      [33]  GOPI S, GIRIBABU K, KATHIRESAN M. Porous organic polymer-
            [13]  ZHU D  Y,  ALEMANY  L B, GUO  W H,  et al. Enhancement of   derived carbon composite as a bimodal catalyst for oxygen evolution
                 crystallinity of imine-linked covalent organic frameworks via aldehyde   reaction and nitrophenol reduction[J]. ACS Omega, 2018, 3(6): 6251-
   57   58   59   60   61   62   63   64   65   66   67