Page 62 - 《精细化工》2021年第1期
P. 62
·52· 精细化工 FINE CHEMICALS 第 38 卷
比表面积较小、催化性能不高的问题,可通过对其 modulators[J]. Polymer Chemistry, 2020, 11(27): 4464-4468.
[14] XIAO P T, XU Y X. Recent progress in two-dimensional polymers
功能化形成复合材料以增强电催化活性。
for energy storage and conversion: Design, synthesis, and applications[J].
(4)在利用炭化将亚胺 COFs 材料进行复合时, Journal of Materials Chemistry A, 2018, 6(44): 21676-21695.
通过控制炭化过程中不同组分的形成和均匀分布以 [15] EL-KADERI H M, HUNT J R, MENDOZA-CORTES J L, et al.
Designed synthesis of 3D covalent organic frameworks[J]. Science,
及同步优化复合材料的局部结构(包括孔隙率和电 2007, 316(5822): 268-272.
导率)来协同增强电催化活性仍存在挑战。 [16] LU W G, WEI Z W, GU Z Y, et al. Tuning the structure and function
of metal-organic frameworks via linker design[J]. Chemical Society
(5)亚胺 COFs 表面或通道内活性位点的电催
Reviews, 2014, 43(16): 5561-5593.
化活性可能不同,对于其电催化机理的研究还需深 [17] CUI X, LEI S, WANG A C, et al. Emerging covalent organic
入探究。 frameworks tailored materials for electrocatalysis[J]. Nano Energy,
2020, 70: 104525.
(6)若要从根本上研究结构和组成是如何影响 [18] KONDRATENKO E V, MUL G, BALTRUSAITIS J, et al. Status and
电催化性能,有必要确定亚胺 COFs 结构上的催化 perspectives of CO 2 conversion into fuels and chemicals by catalytic,
photocatalytic and electrocatalytic processes[J]. Energy & Environmental
位点和化学反应途径。
Science, 2013, 6(11): 3112-3135.
随着人们对亚胺 COFs 在电催化领域不断地发 [19] ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the
掘和认识,亚胺 COFs 材料作为电催化剂在过去几 valorization of exhaust carbon: From CO 2 to chemicals, materials,
and fuels. Technological use of CO 2[J]. Chemical Reviews, 2014,
年中取得了巨大成就,这为该新型多功能电催化材 114(3): 1709-1742.
料的广阔应用与开发奠定了基础。 [20] LIM R J, XIE M S, SK M A, et al. A review on the electrochemical
reduction of CO 2 in fuel cells, metal electrodes and molecular
参考文献: catalysts[J]. Catalysis Today, 2014, 233: 169-180.
[21] WANG B, YANG F L, DONG Y P, et al. Cu@porphyrin-COFs
[1] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory nanorods for efficiently photoelectrocatalytic reduction of CO 2[J].
and experiment in electrocatalysis: Insights into materials design[J]. Chemical Engineering Journal, 2020, 396: 125255.
Science, 2017, 355(6321): eaad 4998. [22] LIN S, DIERCKS C S, ZHANG Y B, et al. Covalent organic
[2] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials: frameworks comprising cobalt porphyrins for catalytic CO 2 reduction
Controllable synthesis and applications in fuel cells and photocatalysis[J]. in water[J]. Science, 2015, 349(6253): 1208-1213.
Energy & Environmental Science, 2012, 5(5): 6717-6731. [23] DIERCKS C S, LIN S, KORNIENKO N, et al. Reticular electronic
[3] JIN H Y, GUO C X, LIU X, et al. Emerging two-dimensional tuning of porphyrin active sites in covalent organic frameworks for
nanomaterials for electrocatalysis[J]. Chemical Reviews, 2018, electrocatalytic carbon dioxide reduction[J]. Journal of the American
118(13): 6337-6408. Chemical Society, 2018, 140(3): 1116-1122.
[4] GAO D, GUO J N, CUI X, et al. Three-dimensional dendritic [24] KARKAS M D, VERHO O, JOHNSTON E V, et al. Artificial
structures of NiCoMo as efficient electrocatalysts for the hydrogen photosynthesis: Molecular systems for catalytic water oxidation[J].
evolution reaction[J]. ACS Applied Materials & Interfaces, 2017, Chemical Reviews, 2014, 114(24): 11863-12001.
9(27): 22420-22431. [25] BERARDI S, DROUET S D, FRANCAS L, et al. Molecular artificial
[5] YANG Y, ZHOU M, GUO W L, et al. NiCoO 2 nanowires grown on photosynthesis[J]. Chemical Society Reviews, 2014, 43(22): 7501-7519.
carbon fiber paper for highly efficient water oxidation[J]. Electrochimica [26] CHAUHAN M, REDDY K P, GOPINATH C S, et al. Copper cobalt
Acta, 2015, 174: 246-253. sulfide nanosheets realizing a promising electrocatalytic oxygen
[6] CUI X, YANG Y, LI Y H, et al. Electrochemical fabrication of evolution reaction[J]. ACS Catalysis, 2017, 7(9): 5871-5879.
3+
porous Ni 0.5Co 0.5 alloy film and its enhanced electrocatalytic activity [27] LI N, AI L H, JIANG J, et al. Spinel-type oxygen-incorporated Ni
towards methanol oxidation[J]. Journal of the Electrochemical self-doped Ni 3S 4 ultrathin nanosheets for highly efficient and stable
Society, 2015, 162(14): F1415-F1424. oxygen evolution electrocatalysis[J]. Journal of Colloid and Interface
[7] CUI X, XIAO P, WANG J, et al. Highly branched metal alloy Science, 2020, 564: 418-427.
networks with superior activities for the methanol oxidation reaction[J]. [28] QIN Q, CHEN L L, WEI T, et al. MoS 2/NiS yolk-shell microsphere-
Angewandte Chemie, 2017, 129(16): 4559-4564. based electrodes for overall water splitting and asymmetric
[8] CUI X, GUO W L, ZHOU M, et al. Promoting effect of Co in supercapacitor[J]. Small, 2019, 15(29): 1803639.
Ni mCo n (m+n=4) bimetallic electrocatalysts for methanol oxidation [29] ZHUANG G L, GAO Y F, ZHOU X, et al. ZIF-67/COF-derived
reaction[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 493-503. highly dispersed Co 3O 4/N-doped porous carbon with excellent
[9] LIU C H (刘春晖), MA X L (马晓莉). Latest development of performance for oxygen evolution reaction and Li-ion batteries[J].
covalent organic frameworks[J]. Chemical Industry and Engineering Chemical Engineering Journal, 2017, 330: 1255-1264.
Progress (化工进展), 2019, 38(11): 4978-4990. [30] LU Z Y, WANG H T, KONG D S, et al. Electrochemical tuning of
[10] WANG T (王婷), XUE R (薛瑞), WEI Y L (魏玉丽), et al. layered lithium transition metal oxides for improvement of oxygen
Development and applications of covalent organic frameworks (COFs) evolution reaction[J]. Nature Communications, 2014, 5(1): 1-7.
materials: Gas storage, catalysis and chemical sensing[J]. Progress in [31] TROTOCHAUD L, YOUNG S L, RANNEY J K, et al. Nickel-iron
Chemistry (化学进展), 2018, 30(6): 753-764. oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional
[11] LOHSE M S, BEIN T. Covalent organic frameworks: Structures, and incidental iron incorporation[J]. Journal of the American Chemical
synthesis, and applications[J]. Advanced Functional Materials, 2018, Society, 2014, 136(18): 6744-6753.
28(33): 1705553. [32] GE X M, SUMBOJA A, WUU D, et al. Oxygen reduction in alkaline
[12] LIU W (刘伟). Preparation of covalent organic frameworks and media: From mechanisms to recent advances of catalysts[J]. ACS
studies on their sensor and catalytic properties[D]. Lanzhou: Lanzhou Catalysis, 2015, 5(8): 4643-4667.
University (兰州大学), 2019. [33] GOPI S, GIRIBABU K, KATHIRESAN M. Porous organic polymer-
[13] ZHU D Y, ALEMANY L B, GUO W H, et al. Enhancement of derived carbon composite as a bimodal catalyst for oxygen evolution
crystallinity of imine-linked covalent organic frameworks via aldehyde reaction and nitrophenol reduction[J]. ACS Omega, 2018, 3(6): 6251-