Page 63 - 《精细化工》2021年第1期
P. 63
第 1 期 刘云利,等: 亚胺 COFs 在电催化领域的应用研究进展 ·53·
6258. N-doped carbons as efficient trifunctional electrocatalysts[J]. ACS
[34] CAO F L (曹凤丽), TENG S (滕帅), GAO Y (高扬), et al. The Applied Materials & Interfaces, 2017, 9(38): 32840-32850.
inflence of carbonization temperature on the electrocatalysist [52] KONG F T, FAN X H, KONG A G, et al. Covalent phenanthroline
performance of ZIF-8[J]. Shandong Chemical Industry (山东化工), framework derived FeS@Fe 3C composite nanoparticles embedding
2018, 47(7): 4-6, 9. in N-S-codoped carbons as highly efficient trifunctional
[35] CHEN S, QIAO S Z. Hierarchically porous nitrogen-doped graphene- electrocatalysts[J]. Advanced Functional Materials, 2018, 28(51):
NiCo 2O 4 hybrid paper as an advanced electrocatalytic water-splitting 1803973.
material[J]. ACS Nano, 2013, 7(11): 10190-10196. [53] CHI J Q, GAO W K, LIN J H, et al. Porous core-shell N-doped
[36] DU C C, HUANG H, WU Y, et al. Ultra-efficient electrocatalytic Mo 2C@C nanospheres derived from inorganic-organic hybrid precursors
hydrogen evolution at one-step carbonization generated molybdenum for highly efficient hydrogen evolution[J]. Journal of Catalysis, 2018,
carbide nanosheets/N-doped carbon[J]. Nanoscale, 2016, 8(36): 360: 9-19.
16251-16258. [54] FENG L L, LI G D, LIU Y P, et al. Carbon-armored Co 9S 8
[37] MUTYALA S, MATHIYARASU J. Noble metal-free FeN-CNFs as nanoparticles as all-pH efficient and durable H 2-evolving
an efficient electrocatalyst for oxygen reduction reaction[J]. International electrocatalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(1):
Journal of Hydrogen Energy, 2018, 43(9): 4746-4753. 980-988.
[38] MONDAL S, MOHANTY B, NURHUDA M, et al. A thiadiazole- [55] LI J S, TANG Y J, LIU C H, et al. Polyoxometalate-based metal-
based covalent organic framework: A metal-free electrocatalyst organic framework-derived hybrid electrocatalysts for highly efficient
toward oxygen evolution reaction[J]. ACS Catalysis, 2020, 10(10): hydrogen evolution reaction[J]. Journal of Materials Chemistry A,
5623-5630. 2016, 4(4): 1202-1207.
[39] LEE Y M, SUNTIVICH J, MAY K J, et al. Synthesis and activities [56] XIE W F, LI Z H, JIANG S, et al. Mass-loading independent
of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid electrocatalyst with high performance for oxygen reduction reaction
and alkaline solutions[J]. The Journal of Physical Chemistry Letters, and Zn-air battery based on Co-N-codoped carbon nanotube assembled
2012, 3(3): 399-404. microspheres[J]. Chemical Engineering Journal, 2019, 373: 734-743.
[40] JIA H X, SUN Z J, JIANG D C, et al. Covalent cobalt porphyrin [57] LIN C Y, ZHANG D T, ZHAO Z H, et al. Covalent organic framework
framework on multiwalled carbon nanotubes for efficient water electrocatalysts for clean energy conversion[J]. Advanced Materials,
oxidation at low overpotential[J]. Chemistry of Materials, 2015, 2018, 30(5): 1703646.
27(13): 4586-4593. [58] ZHOU X J, QIAO J L, YANG L, et al. A review of graphene-based
[41] LEI H T, HAN A L, LI F W, et al. Electrochemical, spectroscopic and nanostructural materials for both catalyst supports and metal-free
theoretical studies of a simple bifunctional cobalt corrole catalyst for catalysts in PEM fuel cell oxygen reduction reactions[J]. Advanced
oxygen evolution and hydrogen production[J]. Physical Chemistry Energy Materials, 2014, 4(8): 1301523.
Chemical Physics, 2014, 16(5): 1883-1893. [59] CAI G M, ZENG L H, HE L Q, et al. Imine gels based on ferrocene
[42] SORIANO-LOPEZ J, GOBERNA-FERRON S, VIGARA L, et al. and porphyrin and their electrocatalytic property[J]. Chemistry-An
Cobalt polyoxometalates as heterogeneous water oxidation catalysts[J]. Asian Journal, 2020, 15(13): 1963-1969.
Inorganic Chemistry, 2013, 52(9): 4753-4755. [60] SHARMA R K, YADAV P, YADAV M, et al. Recent development of
[43] WANG D, GROVES J T. Efficient water oxidation catalyzed by covalent organic frameworks (COFs): Synthesis and catalytic (organic-
homogeneous cationic cobalt porphyrins with critical roles for the electro-photo) applications[J]. Materials Horizons, 2020, 7(2): 411-454.
buffer base[J]. Proceedings of the National Academy of Sciences, [61] WU Z S, CHEN L, LIU J Z, et al. High-performance electrocatalysts
2013, 110(39): 15579-15584. for oxygen reduction derived from cobalt porphyrin-based conjugated
[44] HU S, GOENAGA G, MELTON C, et al. PtCo/CoO x nanocomposites: mesoporous polymers[J]. Advanced Materials, 2014, 26(9): 1450-1455.
Bifunctional electrocatalysts for oxygen reduction and evolution [62] LI Q, WU Q, DUAN Q, et al. In situ anchoring of metal
reactions synthesized via tandem laser ablation synthesis in solution- nanoparticles in the N-doped carbon framework derived from
galvanic replacement reactions[J]. Applied Catalysis B: Environmental, conjugated microporous polymers towards an efficient oxygen
2016, 182: 286-296. reduction reaction[J]. Catalysis Science & Technology, 2018, 8(14):
[45] ZHU Y L, SU C, XU X M, et al. A universal and facile way for the 3572-3579.
development of superior bifunctional electrocatalysts for oxygen [63] LIANG J, ZHOU R F, CHEN X M, et al. Fe-N decorated hybrids of
reduction and evolution reactions utilizing the synergistic effect[J]. CNTs grown on hierarchically porous carbon for high-performance
Chemistry-A European Journal, 2014, 20(47): 15533-15542. oxygen reduction[J]. Advanced Materials, 2014, 26(35): 6074-6079.
[46] BHUNIA S, DAS S K, JANA R, et al. Electrochemical stimuli- [64] LIN Z Y, WALLER G, LIU Y, et al. Facile synthesis of nitrogen-
driven facile metal-free hydrogen evolution from pyrene-porphyrin- doped graphene via pyrolysis of graphene oxide and urea, and its
based crystalline covalent organic framework[J]. ACS Applied electrocatalytic activity toward the oxygen-reduction reaction[J].
Materials & Interfaces, 2017, 9(28): 23843-23851. Advanced Energy Materials, 2012, 2(7): 884-888.
[47] PATRA B C, KHILARI S, MNNNA R N, et al. A metal-free covalent [65] KAMAI R, NAKANISHI S, HASHIMOTO K, et al. Selective
organic polymer for electrocatalytic hydrogen evolution[J]. ACS electrochemical reduction of nitrogen oxides by covalent triazine
Catalysis, 2017, 7(9): 6120-6127. frameworks modified with single Pt atoms[J]. Journal of
[48] GUO J X, LI F F, SUN Y F, et al. Oxygen-incorporated MoS 2 Electroanalytical Chemistry, 2017, 800: 54-59.
ultrathin nanosheets grown on graphene for efficient electrochemical [66] YAMAGUCHI S, KAMIYA K, HASHIMOTO K, et al. Ru atom-
hydrogen evolution[J]. Journal of Power Sources, 2015, 291: 195-200. modified covalent triazine framework as a robust electrocatalyst for
[49] SHINDE S S, SAMI A, KIM D H, et al. Nanostructured SnS-N- selective alcohol oxidation in aqueous electrolytes[J]. Chemical
doped graphene as an advanced electrocatalyst for the hydrogen Communications, 2017, 53(75): 10437-10440.
evolution reaction[J]. Chemical Communications, 2015, 51(86): [67] YOSHIOKA T, IWASE K, NAKANISHI S, et al. Electrocatalytic
15716-15719. reduction of nitrate to nitrous oxide by a copper-modified covalent
[50] WANG C H, KIM J H, TANG J, et al. New strategies for novel triazine framework[J]. The Journal of Physical Chemistry C, 2016,
MOF-derived carbon materials based on nanoarchitectures[J]. Chem, 120(29): 15729-15734.
2020, 6(1): 19-40. [68] MURAHASHI S I, ZHANG D. Ruthenium catalyzed biomimetic
[51] FAN X H, KONG F T, KONG A G, et al. Covalent porphyrin oxidation in organic synthesis inspired by cytochrome P-450[J].
framework-derived Fe 2P@Fe 4N-coupled nanoparticles embedded in Chemical Society Reviews, 2008, 37(8): 1490-1501.