Page 63 - 《精细化工》2021年第1期
P. 63

第 1 期                      刘云利,等:  亚胺 COFs 在电催化领域的应用研究进展                                  ·53·


                 6258.                                             N-doped carbons as efficient trifunctional electrocatalysts[J]. ACS
            [34]  CAO F L (曹凤丽), TENG S (滕帅), GAO Y (高扬),  et al. The   Applied Materials & Interfaces, 2017, 9(38): 32840-32850.
                 inflence of carbonization temperature on  the  electrocatalysist   [52]  KONG F T, FAN X H, KONG A G, et al. Covalent phenanthroline
                 performance of ZIF-8[J]. Shandong Chemical Industry (山东化工),   framework derived FeS@Fe 3C composite nanoparticles embedding
                 2018, 47(7): 4-6, 9.                              in N-S-codoped carbons as highly efficient  trifunctional
            [35]  CHEN S, QIAO S Z. Hierarchically porous nitrogen-doped graphene-   electrocatalysts[J].  Advanced Functional Materials, 2018, 28(51):
                 NiCo 2O 4 hybrid paper as an advanced electrocatalytic water-splitting   1803973.
                 material[J]. ACS Nano, 2013, 7(11): 10190-10196.   [53]  CHI J Q, GAO W K,  LIN J  H, et  al. Porous core-shell N-doped
            [36]  DU C C,  HUANG H, WU  Y, et al. Ultra-efficient  electrocatalytic   Mo 2C@C nanospheres derived from inorganic-organic hybrid precursors
                 hydrogen evolution at one-step carbonization generated molybdenum   for highly efficient hydrogen evolution[J]. Journal of Catalysis, 2018,
                 carbide nanosheets/N-doped carbon[J]. Nanoscale, 2016, 8(36):   360: 9-19.
                 16251-16258.                                  [54]  FENG  L L, LI  G D, LIU  Y P, et  al. Carbon-armored Co 9S 8
            [37]  MUTYALA S, MATHIYARASU J. Noble metal-free FeN-CNFs as   nanoparticles as all-pH efficient and durable H 2-evolving
                 an efficient electrocatalyst for oxygen reduction reaction[J]. International   electrocatalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(1):
                 Journal of Hydrogen Energy, 2018, 43(9): 4746-4753.   980-988.
            [38]  MONDAL S, MOHANTY B, NURHUDA M, et al. A thiadiazole-   [55]  LI J S, TANG  Y J, LIU C H, et al. Polyoxometalate-based metal-
                 based covalent organic framework: A  metal-free electrocatalyst   organic framework-derived hybrid electrocatalysts for highly efficient
                 toward oxygen evolution reaction[J].  ACS Catalysis, 2020, 10(10):   hydrogen evolution reaction[J]. Journal of Materials Chemistry A,
                 5623-5630.                                        2016, 4(4): 1202-1207.
            [39]  LEE Y M, SUNTIVICH J, MAY K J, et al. Synthesis and activities   [56]  XIE  W F, LI Z  H, JIANG S,  et al. Mass-loading independent
                 of rutile IrO 2 and RuO 2 nanoparticles for oxygen evolution in acid   electrocatalyst with high performance for oxygen reduction reaction
                 and alkaline solutions[J]. The Journal of Physical Chemistry Letters,   and Zn-air battery based on Co-N-codoped carbon nanotube assembled
                 2012, 3(3): 399-404.                              microspheres[J]. Chemical Engineering Journal, 2019, 373: 734-743.
            [40]  JIA H X, SUN Z J, JIANG D C, et  al. Covalent cobalt  porphyrin   [57]  LIN C Y, ZHANG D T, ZHAO Z H, et al. Covalent organic framework
                 framework on multiwalled carbon nanotubes for efficient water   electrocatalysts for clean energy conversion[J]. Advanced Materials,
                 oxidation at low overpotential[J]. Chemistry of Materials, 2015,   2018, 30(5): 1703646.
                 27(13): 4586-4593.                            [58]  ZHOU X J, QIAO J L, YANG L, et al. A review of graphene-based
            [41]  LEI H T, HAN A L, LI F W, et al. Electrochemical, spectroscopic and   nanostructural materials for both catalyst supports and  metal-free
                 theoretical studies of a simple bifunctional cobalt corrole catalyst for   catalysts in PEM fuel cell oxygen reduction reactions[J]. Advanced
                 oxygen evolution and  hydrogen  production[J]. Physical  Chemistry   Energy Materials, 2014, 4(8): 1301523.
                 Chemical Physics, 2014, 16(5): 1883-1893.     [59]  CAI G M, ZENG L H, HE L Q, et al. Imine gels based on ferrocene
            [42]  SORIANO-LOPEZ J, GOBERNA-FERRON S, VIGARA L, et al.   and porphyrin and their electrocatalytic property[J]. Chemistry-An
                 Cobalt polyoxometalates as heterogeneous water oxidation catalysts[J].   Asian Journal, 2020, 15(13): 1963-1969.
                 Inorganic Chemistry, 2013, 52(9): 4753-4755.   [60]  SHARMA R K, YADAV P, YADAV M, et al. Recent development of
            [43]  WANG D, GROVES J  T. Efficient  water oxidation catalyzed by   covalent organic frameworks (COFs): Synthesis and catalytic (organic-
                 homogeneous cationic cobalt porphyrins with critical roles for the   electro-photo) applications[J]. Materials Horizons, 2020, 7(2): 411-454.
                 buffer base[J]. Proceedings of the National Academy of Sciences,   [61]  WU Z S, CHEN L, LIU J Z, et al. High-performance electrocatalysts
                 2013, 110(39): 15579-15584.                       for oxygen reduction derived from cobalt porphyrin-based conjugated
            [44]  HU S, GOENAGA G, MELTON C, et al. PtCo/CoO x nanocomposites:   mesoporous polymers[J]. Advanced Materials, 2014, 26(9): 1450-1455.
                 Bifunctional electrocatalysts for oxygen reduction and evolution   [62]  LI Q,  WU Q, DUAN  Q,  et al. In situ  anchoring of metal
                 reactions synthesized via tandem laser ablation synthesis in solution-   nanoparticles  in the N-doped carbon  framework  derived  from
                 galvanic replacement reactions[J]. Applied Catalysis B: Environmental,   conjugated  microporous polymers towards an efficient oxygen
                 2016, 182: 286-296.                               reduction reaction[J]. Catalysis Science & Technology, 2018, 8(14):
            [45]  ZHU Y L, SU C, XU X M, et al. A universal and facile way for the   3572-3579.
                 development of superior bifunctional electrocatalysts for oxygen   [63]  LIANG J, ZHOU R F, CHEN X M, et al. Fe-N decorated hybrids of
                 reduction and evolution reactions utilizing the synergistic effect[J].   CNTs grown on hierarchically porous carbon for high-performance
                 Chemistry-A European Journal, 2014, 20(47): 15533-15542.   oxygen reduction[J]. Advanced Materials, 2014, 26(35): 6074-6079.
            [46]  BHUNIA S, DAS S K, JANA R, et  al. Electrochemical stimuli-   [64]  LIN Z Y, WALLER G,  LIU Y,  et al. Facile synthesis of nitrogen-
                 driven facile metal-free hydrogen evolution from pyrene-porphyrin-   doped graphene  via  pyrolysis  of  graphene oxide and  urea, and its
                 based crystalline covalent organic framework[J]. ACS Applied   electrocatalytic  activity toward the  oxygen-reduction reaction[J].
                 Materials & Interfaces, 2017, 9(28): 23843-23851.   Advanced Energy Materials, 2012, 2(7): 884-888.
            [47]  PATRA B C, KHILARI S, MNNNA R N, et al. A metal-free covalent   [65]  KAMAI R, NAKANISHI S, HASHIMOTO K, et  al. Selective
                 organic polymer for electrocatalytic  hydrogen evolution[J]. ACS   electrochemical reduction of  nitrogen oxides by covalent triazine
                 Catalysis, 2017, 7(9): 6120-6127.                 frameworks modified with single Pt atoms[J]. Journal of
            [48]  GUO J X, LI F F, SUN Y F, et al. Oxygen-incorporated MoS 2   Electroanalytical Chemistry, 2017, 800: 54-59.
                 ultrathin nanosheets grown on graphene for efficient electrochemical   [66]  YAMAGUCHI S, KAMIYA K,  HASHIMOTO K, et al. Ru atom-
                 hydrogen evolution[J]. Journal of Power Sources, 2015, 291: 195-200.   modified covalent triazine framework as a robust electrocatalyst for
            [49]  SHINDE S S, SAMI A, KIM D  H, et  al. Nanostructured SnS-N-   selective alcohol  oxidation in aqueous electrolytes[J]. Chemical
                 doped graphene as an advanced  electrocatalyst for the hydrogen   Communications, 2017, 53(75): 10437-10440.
                 evolution reaction[J]. Chemical Communications, 2015, 51(86):   [67]  YOSHIOKA T, IWASE K, NAKANISHI S, et al. Electrocatalytic
                 15716-15719.                                      reduction of nitrate to nitrous oxide by a copper-modified covalent
            [50]  WANG C  H, KIM J H, TANG J, et  al. New strategies for  novel   triazine framework[J].  The Journal of Physical Chemistry C, 2016,
                 MOF-derived carbon materials based on nanoarchitectures[J]. Chem,   120(29): 15729-15734.
                 2020, 6(1): 19-40.                            [68]  MURAHASHI S I, ZHANG  D. Ruthenium catalyzed biomimetic
            [51]  FAN X H, KONG F T, KONG  A G, et al. Covalent porphyrin   oxidation in  organic synthesis inspired by cytochrome P-450[J].
                 framework-derived Fe 2P@Fe 4N-coupled nanoparticles embedded in   Chemical Society Reviews, 2008, 37(8): 1490-1501.
   58   59   60   61   62   63   64   65   66   67   68