Page 158 - 《精细化工》2021年第10期
P. 158

·2088·                            精细化工   FINE CHEMICALS                                 第 38 卷

            研究反应温度、压力等条件对催化剂在反应中催化                                 学报), 2020, 48: 980-985.
                                                               [20]  ZHANG R B (张荣斌), LI L (李莉), CAI J X (蔡建信), et al. The
            性能的影响,优化工艺条件。                                          research progress  on  surface structure and catalytic properties  of
                                                                   spinels[J]. Journal of Jiangxi Normal University (Natural Science)(江
            参考文献                                                   西师范大学学报:自然科学版), 2019,43(6):565-575.
                                                               [21]  FUKUNAGA T, RYUMON N, ICHIKUNI N, et al. Characterization
            [1]   BOCKRIS J O  M. The hydrogen economy: Its  history[J].   of CuMn-spinel catalyst for methanol steam reforming[J]. Catalysis
                 International Journal of Hydrogen Energy, 2013, 38(6): 2579-2588.   Communications, 2009, 10(14): 1800-1803.
            [2]   LIN L L,  ZHOU  W, GAO R,  et al. Low-temperature hydrogen   [22]  XI H J, HOU X N, LIU Y J, et al. Cu-Al spinel oxide as an efficient
                 production  from water and methanol  using  Pt/α-MoC catalysts[J].   catalyst for methanol steam reforming[J]. Angew Chem Int Ed, 2014,
                 Nature, 2017, 544(7648): 80-83.                   53(44): 11886-11889.
            [3]   SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory   [23]  HOU X N, QING  S J, LIU  Y J,  et al. Enhancing effect of MgO
                 and experiment in electrocatalysis: Insights into materials design[J].   modification of Cu-Al spinel oxide catalyst for  methanol steam
                 Science, 2017, 355(6321): eaad4998.               reforming[J]. International Journal of Hydrogen Energy, 2020, 45(1):
            [4]   HOSSAIN M A,  JEWARATNAM J, GANESAN P. Prospect of   477-489.
                 hydrogen production from oil  palm biomass by thermochemical   [24]  HOU X N, QING  S  J, LIU Y  J,  et al. Cu 1−xMg xAl 3 spinel solid
                 process—A review[J]. International Journal of Hydrogen Energy,   solution as a sustained release catalyst: One-pot green synthesis and
                 2016, 41(38): 16637-16655.                        catalytic performance in  methanol steam reforming[J]. Fuel, 2021,
            [5]   LAMY  C. From hydrogen  production by water electrolysis to its   284: 119041.
                 utilization in a PEM fuel cell or in a SO fuel cell: Some   [25]  LIU Y J, QING S J, HOU X N, et al. Cu-Ni-Al spinel oxide as an
                 considerations on the energy efficiencies[J]. International Journal of   efficient durable catalyst for methanol steam reforming[J].
                 Hydrogen Energy, 2016, 41(34): 15415-15425.       ChemCatChem, 2018, 10(24): 5698-5706.
            [6]   HUANG G S (黄格省), YAN J (阎捷), SHI X Y (师晓玉),  et al.   [26]  QING S J (庆绍军), HOU X N (侯晓宁), LIU Y J (刘雅杰), et al.
                 Development status and prospect analysis of  hydrogen  production   Catalytic performance of Cu-Ni-Al  spinel for methanol steam
                 with new energy technology[J]. Petrochemical Technology &   reforming to hydrogen[J]. Journal of Fuel Chemistry and Technology
                 Application (石化技术与应用), 2019, 37(5): 289-296.      (燃料化学学报), 2018, 46(10): 1210-1217.
            [7]   RIBEIRINHA P, MATEOS-PEDRERO C, BOAVENTURA M, et al.   [27]  ZHANG Y Z, ZENG Z Q, LI Y F, et al. Effect of the A-site cation
                                                                                            2+
                                                                                        2+
                                                                                     2+
                 CuO/ZnO/Ga 2O 3 catalyst for low temperature MSR reaction:   over spinel AMn 2O 4 (A= Cu , Ni , Zn ) for toluene combustion:
                 Synthesis, characterization and kinetic  model[J]. Applied  Catalysis   Enhancement of the synergy and the oxygen activation  ability[J].
                 B: Environmental, 2018, 221: 371-379.             Fuel, 2021, 288: 119700.
            [8]   SÁ S, SILVA H, BRANDÃO L, et al. Catalysts for methanol steam   [28]  LIU Y J, QING S J, HOU X N, et al. Temperature dependence of
                 reforming—A review [J]. Applied Catalysis B: Environmental, 2010,   Cu-Al spinel formation and its catalytic performance in  methanol
                 99(1): 43-57.                                     steam reforming[J]. Catal Sci Technol, 2017, 7(21): 5069-5078.
            [9]   SUN Z, SUN Z Q. Hydrogen generation from methanol reforming   [29]  ZHAO H J, FANG K G, ZHOU J, et al. Direct synthesis of methyl
                 for  fuel cell applications: A review[J]. Journal of Central South   formate from syngas on Cu-Mn mixed oxide catalyst [J].
                 University, 2020, 27(4): 1074-1103.               International Journal of Hydrogen Energy, 2016, 41(21): 8819-8828.
            [10]  QING S J (庆绍军), HOU X N (侯晓宁), LI L  D (李林东), et al.   [30]  BEHAR S, GONZALEZ P, AGULHON P, et al. New synthesis of
                 Application feasibility and development prospect of methanol to   nanosized Cu-Mn spinels as efficient oxidation catalysts[J]. Catalysis
                 hydrogen technology for hydrogen fuel cell vehicle[J].  Energy and   Today, 2012, 189(1): 35-41.
                 Energy Conservation (能源与节能), 2019,(2): 62-65,70.   [31]  FIGUEIREDO R T, MARTı ́ NEZ-ARIAS A, GRANADOS M L, et al.
            [11]  SHANMUGAM  V, NEUBERG S, ZAPF R,  et al. Hydrogen   Spectroscopic evidence of Cu-Al interactions  in Cu-Zn-Al mixed
                 production  over  highly active Pt  based catalyst coatings by steam   oxide catalysts used in CO hydrogenation[J]. Journal of Catalysis,
                 reforming of methanol: Effect of support and co-support[J].   1998, 178(1): 146-152.
                 International Journal of Hydrogen Energy, 2020, 45(3): 1658-1670.   [32]  MORETTI G, FIERRO G,  LO J M,  et al. Characterization of
            [12]  ZENG Z L, LIU G L, GENG J F, et al. A high-performance PdZn   CuO-ZnO catalysts by X-ray photoelectron spectroscopy: Precursors,
                 alloy catalyst obtained from metal-organic framework for methanol   calcined and reduced samples[J]. Surface  and Interface Analysis,
                 steam reforming hydrogen  production[J]. International Journal of   1989, 14(6/7): 325-336.
                 Hydrogen Energy, 2019, 44(45): 24387-24397.   [33]  SEVERINO F, BRITO J, LAINE J,  et al. Nature of copper active
            [13]  QI T Y C, YANG  Y, WU  Y J,  et al. Sorption-enhanced  methanol   sites in the carbon monoxide oxidation on CuAl 2O 4  and CuCr 2O 4
                 steam reforming for hydrogen production by combined copper-based   Spinel type catalysts[J]. Journal of Catalysis, 1998, 177(1): 82-95.
                 catalysts with hydrotalcites[J]. Chemical Engineering and Processing-   [34]  ZHU S H, GAO X Q, ZHU Y L, et al. Promoting effect of boron
                 Process Intensification, 2018, 127: 72-82.        oxide on Cu/SiO 2 catalyst for glycerol hydrogenolysis to 1,
            [14]  LIU Y X, ZHOU W, LIN Y, et al. Novel copper foam with ordered   2-propanediol[J]. Journal of Catalysis, 2013, 303: 70-79.
                 hole arrays as catalyst support for methanol steam  reforming   [35]  LI  F,  ZHANG L H, EVANS D G,  et al. Structure and surface
                 microreactor[J]. Applied Energy, 2019, 246: 24-37.   chemistry of manganese-doped copper-based mixed metal oxides
            [15]  EAIMSUMANG S, PETCHAKAN S, LUENGNARUEMITCHAI A.   derived from layered double hydroxides[J]. Colloids and Surfaces A:
                 Dependence of the CeO 2 morphology in CuO/CeO 2 catalysts for the   Physicochemical and Engineering Aspects, 2004, 244(1/2/3): 169- 177.
                 oxidative steam reforming of methanol[J]. Reaction Kinetics,   [36]  PIUMETTI M, FINO D, RUSSO N. Mesoporous manganese oxides
                 Mechanisms and Catalysis, 2019, 127(2): 669-690.   prepared by solution combustion synthesis as catalysts for the total
            [16]  YANG S Q, HE J P, ZHANG N, et al. Effect of rare-earth element   oxidation of  VOCs[J]. Applied Catalysis B: Environmental, 2015,
                 modification on the performance of Cu/ZnAl catalysts derived from   163: 277-287.
                 hydrotalcite precursor in methanol steam reforming[J]. Journal of   [37]  ZHAO H J, LIN M G, FANG K G, et al. Preparation and evaluation
                 Fuel Chemistry and Technology, 2018, 46(2): 179-188.   of Cu-Mn/Ca-Zr catalyst for  methyl formate synthesis from
            [17]  MATEOS-PEDRERO C, AZENHA  C,  TANAKA A,  et al. The   syngas[J]. Applied Catalysis A: General, 2016, 514: 276-283.
                 influence of the support composition on the physicochemical  and   [38]  SHOEMAKER  D P, LI J, SESHADRI R. Unraveling atomic
                 catalytic properties of Cu catalysts supported on zirconia-alumina for   positions in an oxide spinel with two Jahn-Teller ions: Local
                 methanol steam reforming[J]. Applied Catalysis B: Environmental,   structure investigation of CuMn 2O 4[J]. Journal of the American
                 2020, 277:119243.                                 Chemical Society, 2009, 131(32): 11450-11457.
            [18]  SHAHSAVAR H,  TAGHIZADEH M, KIADEHI A D.  Effects of   [39]  YANG  Y J, LIU J, WANG  Z,  et al. Interface reaction activity of
                 catalyst preparation route and promoters (Ce and Zr) on catalytic   recyclable and regenerable Cu-Mn spinel-type sorbent for Hg   0
                 activity of CuZn/CNTs  catalysts for hydrogen  production from   capture from flue gas[J]. Chemical Engineering Journal, 2019, 372:
                 methanol steam reforming[J]. International Journal of  Hydrogen   697-707.
                 Energy, 2021, 46(13): 8906-8921.              [40]  WAGNER C, DAVIS  L, ZELLER M,  et al. Empirical atomic
            [19]  QIAO W J (乔韦军), ZHANG K W (张楷文), ZHANG N (张娜), et al.   sensitivity factors for quantitative analysis by electron spectroscopy
                 Study on CuAl 2O 4 catalytic  material for methanol steam   for chemical analysis[J]. Surface and Interface Analysis, 1981, 3(5):
                 reforming[J]. Journal of Fuel Chemistry and Technology (燃料化学  211-225.
   153   154   155   156   157   158   159   160   161   162   163