Page 25 - 《精细化工》2021年第10期
P. 25
第 10 期 陕绍云,等: 基于天然高分子的可再生光刻材料的研究进展 ·1955·
nanostructuring of natural silk fibroin protein revealed by near-field Nature Photonics, 2018, 12(6): 343-348.
nano-spectroscopy[C]//2017 19th International Conference on Solid- [73] TAKEI S, MAKI H, SUGAHARA K, et al. Inedible cellulose-based
State Sensors, Actuators and Microsystems (TRANSDUCERS), biomass resist material amenable to water-based processing for use in
IEEE, 2017: 1207-1210. electron beam lithography[J]. AIP Advances, 2015, 5(7): 077141.
[55] PAL R K, YADAVALLI V K. Silk protein nanowires patterned using [74] WOLFBERGER A, PETRITZ A, FIAN A, et al. Photolithographic
electron beam lithography[J]. Nanotechnology, 2018, 29(33): 335301. patterning of cellulose: A versatile dual-tone photoresist for advanced
[56] AMSDEN J J, DOMACHUK P, GOPINATH A, et al. Rapid applications[J]. Cellulose, 2015, 22(1): 717-727.
nanoimprinting of silk fibroin films for biophotonic applications[J]. [75] GANNER T, SATTELKOW J, RUMPF B, et al. Direct-write
Advanced Materials, 2010, 22(15): 1746-1749. fabrication of cellulose nano-structures via focused electron beam
[57] BICER M, KUMAR B G, MELIKOV R, et al. Silk as a induced nanosynthesis[J]. Scientific Reports, 2016, 6(1): 1-11.
biodegradable resist for field-emission scanning probe lithography[J]. [76] LIU S L, TAO D D, YU T F, et al. Highly flexible, transparent
Nanotechnology, 2020, 31(43): 435303. cellulose composite films used in UV imprint lithography[J]. Cellulose,
[58] QIN N, ZHANG S Q, JIANG J J, et al. Precise control of natural and 2013, 20(2): 907-918.
synthetic silk nanostructures using electron beam lithography[C]// [77] FERNANDEZ J G, MILLS C A, MARTINEZ E, et al. Micro- and
2017 IEEE 30th International Conference on Micro Electro Mechanical nanostructuring of freestanding, biodegradable, thin sheets of
Systems (MEMS), IEEE, 2017: 282-284. chitosan via soft lithography[J]. Journal of Biomedical Materials
[59] QIN N, TAO T H. 3D electron printing in genetically engineered Research Part A: An Official Journal of the Society for Biomaterials,
spider silk proteins at ~50 nm resolution[C]//2019 IEEE 32nd the Japanese Society for Biomaterials, and the Australian Society for
International Conference on Micro Electro Mechanical Systems Biomaterials and the Korean Society for Biomaterials, 2008, 85(1):
(MEMS), IEEE, 2019: 551-553. 242-247.
[60] JIANG J J, ZHANG S Q, QIN N, et al. 2D and 3D functional [78] PARK I, CHENG J, PISANO A P, et al. Low temperature, low
nanostructures of genetically engineered spider silk using focused pressure nanoimprinting of chitosan as a biomaterial for
ION beam[C]//2017 IEEE 30th International Conference on Micro bionanotechnology applications[J]. Applied Physics Letters, 2007,
Electro Mechanical Systems (MEMS), IEEE, 2017: 255-257. 90(9): 093902.
[61] CHANG Q, DARABI M A, LIU Y Q, et al. Hydrogels from natural [79] VOZNESENSKIY S S, NEPOMNYASCHIY A, KULCHIN Y N.
egg white with extraordinary stretchability, direct-writing 3D Study of biopolymer chitosan as resist for submicron electronic
printability and self-healing for fabrication of electronic sensors and lithography[C]//Solid State Phenomena. Trans Tech Publications
actuators[J]. Journal of Materials Chemistry A, 2019, 7(42): 24626- Ltd., 2014, 213: 180-185.
24640. [80] VOZNESENSKIY S S, NEPOMNYASCHIY A. Dose characteristics
[62] KUAN Y H, BHAT R, KARIM A A. Emulsifying and foaming of multilayer chitosan-metal-dielectric nanostructures for electronic
properties of ultraviolet-irradiated egg white protein and sodium nanolithography[C]//Solid State Phenomena. Trans Tech Publications
caseinate[J]. Journal of Agricultural and Food Chemistry, 2011, Ltd., 2016, 245: 195-199.
59(8): 4111-4118. [81] CAILLAU M, CREMILLIEU P, LAURENCEAU E, et al. Fifty
[63] WANG D H, HA Y, GU J, et al. 2D protein supramolecular nanofilm nanometer lines patterned into silica using water developable chitosan
with exceptionally large area and emergent functions[J]. Advanced bioresist and electron beam lithography[J]. Journal of Vacuum Science
Materials, 2016, 28(34): 7414-7423. & Technology B, Nanotechnology and Microelectronics: Materials,
[64] JIANG B J, YANG J, LI C, et al. Water-basedphoto-andelectron- Processing, Measurement, and Phenomena, 2017, 35(6): 06GE01.
beam lithography using egg white as a resist[J]. Advanced Materials [82] CAILLAU M, CHEVALIER C, CREMILLIEU P, et al. Sub-micron
Interfaces, 2017, 4(7): 1601223. lines patterning into silica using water developable chitosan bioresist
[65] ZHU S H, ZENG W B, MENG Z H, et al. Using wool keratin as a films for eco-friendly positive tone e-beam and UV lithography[C]//
basic resist material to fabricate precise protein patterns[J]. Advanced Optical MicrolithographyⅩⅩⅪ. International Society for Optics and
Materials, 2019, 31(28): 1900870. Photonics, 2018: 105870S.
[66] ZENG W B, YU D S, TANG Y H, et al. Wool keratin photolithography [83] TAKEI S. Plant-based resist materials for ultraviolet curing
as an eco-friendly route to fabricate protein microarchitectures[J]. nanoimprint lithography[J]. Journal of Micro/Nanolithography,
ACS Applied Bio Materials, 2020, 3(5): 2891-2896. MEMS, and MOEMS, 2010, 9(3): 033006.
[67] ZHAO C Y, SHAO C C, YU X W, et al. A pH-UV dual-responsive [84] TAKEI S. Step and flash nano imprint lithography of 80 nm dense
photoresist for nanoimprint lithography that improves mold release[J]. line pattern using trehalose derivative resist material[J]. Applied
The Journal of Physical Chemistry C, 2017, 121(21): 11428-11436. Physics Express, 2010, 3(2): 025202.
[68] MADDIPATLA M V S N, WEHRUNG D, TANG C, et al. [85] BAT E, LEE J, LAU U Y, et al. Trehalose glycopolymer resists allow
Photoresponsive coumarin polyesters that exhibit cross-linking and direct writing of protein patterns by electron-beam lithography[J].
chain scission properties[J]. Macromolecules, 2013, 46(13): 5133-5140. Nature Communications, 2015, 6(1): 1-8.
[69] MCCORMICK A M, MADDIPATLA M V S N, SHI S J, et al. [86] TAKEI S, OSHIMA A, SEKIGUCHI A, et al. Electron beam
Micropatterned coumarin polyester thin films direct neurite lithography using highly sensitive negative type of plant-based resist
orientation[J]. ACS Applied Materials & Interfaces, 2014, 6(22): material derived from biomass on hardmask layer[J]. Applied Physics
19655-19667. Express, 2011, 4(10): 106502.
[70] LIN H, WAN X, LI Z J, et al. Photoreversible resists for UV [87] TAKEI S, OSHIMA A, WAKABAYASHI T, et al. Eco-friendly
nanoimprint lithography (UV-NIL)[J]. ACS Applied Materials & electron beam lithography using water-developable resist material
Interfaces, 2010, 2(7): 2076-2082. derived from biomass[J]. Applied Physics Letters, 2012, 101(3):
[71] DORE C, OSMOND J, MIHI A. A water-processable cellulose-based 033106.
resist for advanced nanofabrication[J]. Nanoscale, 2018, 10(37): [88] TAKEI S, SUGINO N, HANABATA M, et al. Ecofriendly ethanol-
17884-17892. developable processes for electron beam lithography using positive-
[72] ESPINHA A, DORE C, MATRICARDI C, et al. Hydroxypropyl tone dextrin resist material[J]. Applied Physics Express, 2017, 10(7):
cellulose photonic architectures by soft nanoimprinting lithography[J]. 07650.