Page 25 - 《精细化工》2021年第10期
P. 25

第 10 期                   陕绍云,等:  基于天然高分子的可再生光刻材料的研究进展                                   ·1955·


                 nanostructuring of natural silk fibroin protein revealed by near-field   Nature Photonics, 2018, 12(6): 343-348.
                 nano-spectroscopy[C]//2017 19th International Conference on Solid-   [73]  TAKEI S, MAKI H, SUGAHARA K, et al. Inedible cellulose-based
                 State Sensors, Actuators and Microsystems (TRANSDUCERS),   biomass resist material amenable to water-based processing for use in
                 IEEE, 2017: 1207-1210.                            electron beam lithography[J]. AIP Advances, 2015, 5(7): 077141.
            [55]  PAL R K, YADAVALLI V K. Silk protein nanowires patterned using   [74]  WOLFBERGER A, PETRITZ A, FIAN A, et al. Photolithographic
                 electron beam lithography[J]. Nanotechnology, 2018, 29(33): 335301.   patterning of cellulose: A versatile dual-tone photoresist for advanced
            [56]  AMSDEN J J, DOMACHUK P, GOPINATH A,  et al. Rapid   applications[J]. Cellulose, 2015, 22(1): 717-727.
                 nanoimprinting of silk fibroin films for biophotonic applications[J].   [75]  GANNER T, SATTELKOW J, RUMPF B, et al. Direct-write
                 Advanced Materials, 2010, 22(15): 1746-1749.      fabrication of cellulose nano-structures  via  focused electron  beam
            [57]  BICER M,  KUMAR B G, MELIKOV R, et al. Silk as a   induced nanosynthesis[J]. Scientific Reports, 2016, 6(1): 1-11.
                 biodegradable resist for field-emission scanning probe lithography[J].   [76]  LIU S L, TAO D  D, YU T F,  et al. Highly flexible, transparent
                 Nanotechnology, 2020, 31(43): 435303.             cellulose composite films used in UV imprint lithography[J]. Cellulose,
            [58]  QIN N, ZHANG S Q, JIANG J J, et al. Precise control of natural and   2013, 20(2): 907-918.
                 synthetic silk  nanostructures  using electron beam lithography[C]//   [77]  FERNANDEZ J G, MILLS C A, MARTINEZ E, et al. Micro- and
                 2017 IEEE 30th International Conference on Micro Electro Mechanical   nanostructuring  of freestanding, biodegradable, thin sheets of
                 Systems (MEMS), IEEE, 2017: 282-284.              chitosan via soft lithography[J]. Journal of Biomedical Materials
            [59]  QIN N, TAO T H. 3D electron  printing in  genetically engineered   Research Part A: An Official Journal of the Society for Biomaterials,
                 spider silk proteins at ~50 nm resolution[C]//2019 IEEE 32nd   the Japanese Society for Biomaterials, and the Australian Society for
                 International Conference on Micro Electro Mechanical Systems   Biomaterials and the Korean Society for Biomaterials, 2008, 85(1):
                 (MEMS), IEEE, 2019: 551-553.                      242-247.
            [60]  JIANG J J, ZHANG S Q, QIN N,  et al. 2D  and 3D  functional   [78]  PARK I, CHENG  J, PISANO A P,  et al. Low temperature, low
                 nanostructures of genetically engineered spider silk using focused   pressure nanoimprinting of chitosan as  a biomaterial for
                 ION beam[C]//2017 IEEE 30th International Conference on Micro   bionanotechnology  applications[J]. Applied  Physics Letters, 2007,
                 Electro Mechanical Systems (MEMS), IEEE, 2017: 255-257.   90(9): 093902.
            [61]  CHANG Q, DARABI M A, LIU Y Q, et al. Hydrogels from natural   [79]  VOZNESENSKIY  S S, NEPOMNYASCHIY A, KULCHIN Y N.
                 egg white with  extraordinary stretchability, direct-writing 3D   Study of  biopolymer chitosan as resist for submicron  electronic
                 printability and self-healing for fabrication of electronic sensors and   lithography[C]//Solid State Phenomena. Trans Tech Publications
                 actuators[J]. Journal of Materials Chemistry A, 2019, 7(42): 24626-   Ltd., 2014, 213: 180-185.
                 24640.                                        [80]  VOZNESENSKIY S S, NEPOMNYASCHIY A. Dose characteristics
            [62]  KUAN Y H, BHAT R, KARIM A  A. Emulsifying and foaming   of multilayer chitosan-metal-dielectric nanostructures for  electronic
                 properties  of  ultraviolet-irradiated egg white protein and sodium   nanolithography[C]//Solid State Phenomena. Trans Tech Publications
                 caseinate[J]. Journal of Agricultural and Food Chemistry, 2011,   Ltd., 2016, 245: 195-199.
                 59(8): 4111-4118.                             [81]  CAILLAU M,  CREMILLIEU P,  LAURENCEAU E,  et al. Fifty
            [63]  WANG D H, HA Y, GU J, et al. 2D protein supramolecular nanofilm   nanometer lines patterned into silica using water developable chitosan
                 with exceptionally large area  and emergent functions[J].  Advanced   bioresist and electron beam lithography[J]. Journal of Vacuum Science
                 Materials, 2016, 28(34): 7414-7423.               &  Technology B,  Nanotechnology and Microelectronics: Materials,
            [64]  JIANG B J,  YANG J, LI  C,  et al. Water-basedphoto-andelectron-   Processing, Measurement, and Phenomena, 2017, 35(6): 06GE01.
                 beam lithography using egg white as a resist[J]. Advanced Materials   [82]  CAILLAU M, CHEVALIER C, CREMILLIEU P, et al. Sub-micron
                 Interfaces, 2017, 4(7): 1601223.                  lines patterning into silica using water developable chitosan bioresist
            [65]  ZHU S H, ZENG W B, MENG Z H, et al. Using wool keratin as a   films for eco-friendly positive tone e-beam and UV lithography[C]//
                 basic resist material to fabricate precise protein patterns[J]. Advanced   Optical MicrolithographyⅩⅩⅪ. International Society for Optics and
                 Materials, 2019, 31(28): 1900870.                 Photonics, 2018: 105870S.
            [66]  ZENG W B, YU D S, TANG Y H, et al. Wool keratin photolithography   [83]  TAKEI S. Plant-based resist materials for ultraviolet curing
                 as an  eco-friendly route to fabricate  protein microarchitectures[J].   nanoimprint lithography[J]. Journal of Micro/Nanolithography,
                 ACS Applied Bio Materials, 2020, 3(5): 2891-2896.   MEMS, and MOEMS, 2010, 9(3): 033006.
            [67]  ZHAO C Y, SHAO C C, YU X W, et al. A pH-UV dual-responsive   [84]  TAKEI S. Step and flash nano imprint lithography of 80 nm dense
                 photoresist for nanoimprint lithography that improves mold release[J].   line pattern using trehalose derivative resist material[J]. Applied
                 The Journal of Physical Chemistry C, 2017, 121(21): 11428-11436.   Physics Express, 2010, 3(2): 025202.
            [68]  MADDIPATLA M V S N, WEHRUNG D, TANG  C,  et al.   [85]  BAT E, LEE J, LAU U Y, et al. Trehalose glycopolymer resists allow
                 Photoresponsive coumarin polyesters that exhibit cross-linking and   direct writing of protein patterns by electron-beam lithography[J].
                 chain scission properties[J]. Macromolecules, 2013, 46(13): 5133-5140.   Nature Communications, 2015, 6(1): 1-8.
            [69]  MCCORMICK A  M, MADDIPATLA M V S N, SHI  S J,  et al.   [86]  TAKEI S, OSHIMA A, SEKIGUCHI A,  et al. Electron beam
                 Micropatterned coumarin polyester thin films direct neurite   lithography using highly sensitive negative type of plant-based resist
                 orientation[J]. ACS Applied Materials & Interfaces, 2014, 6(22):   material derived from biomass on hardmask layer[J]. Applied Physics
                 19655-19667.                                      Express, 2011, 4(10): 106502.
            [70]  LIN H, WAN X,  LI Z J,  et al. Photoreversible resists for UV   [87]  TAKEI S, OSHIMA A, WAKABAYASHI T,  et al. Eco-friendly
                 nanoimprint lithography (UV-NIL)[J]. ACS Applied Materials &   electron beam lithography using water-developable resist material
                 Interfaces, 2010, 2(7): 2076-2082.                derived from biomass[J]. Applied Physics Letters, 2012, 101(3):
            [71]  DORE C, OSMOND J, MIHI A. A water-processable cellulose-based   033106.
                 resist for advanced nanofabrication[J].  Nanoscale, 2018, 10(37):   [88]  TAKEI S, SUGINO N, HANABATA M, et al. Ecofriendly ethanol-
                 17884-17892.                                      developable processes for electron beam lithography using positive-
            [72]  ESPINHA A, DORE  C, MATRICARDI C,  et al. Hydroxypropyl   tone dextrin resist material[J]. Applied Physics Express, 2017, 10(7):
                 cellulose photonic architectures by soft nanoimprinting lithography[J].   07650.
   20   21   22   23   24   25   26   27   28   29   30