Page 24 - 《精细化工》2021年第10期
P. 24

·1954·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 lithography: Emergent materials and methods of actuation[J]. Nano   [35]  LIU Z, ZHOU Z T, ZHANG S Q, et al. "Print-to-pattern": Silk-based
                 Today, 2020, 31: 100838.                          water lithography[J]. Small, 2018, 14(47): 1802953.
            [17]  ZHU S H, TANG Y H, LIN C X, et al. Recent advances in patterning   [36]  APPLEGATE M B, PARTLOW B P, COBURN J,  et al.
                 natural polymers: From nanofabrication techniques to applications[J].   Photocrosslinking  of silk fibroin using riboflavin for ocular
                 Small Methods, 2021, 5(3): 2001060.               prostheses[J]. Advanced Materials, 2016, 28(12): 2417-2420.
            [18]  PARK J, LEE S G, VESTERS Y, et al. Molecular modeling of EUV   [37]  PEROTTO G, CITTADINI M, TAO H, et al. Fabrication of tunable,
                 photoresist revealing the effect of chain conformation on line-edge   high-refractive-index titanate-silk nanocomposites on the micro- and
                 roughness formation[J]. Polymers, 2019, 11(12): 1923.   nanoscale[J]. Advanced Materials, 2015, 27(42): 6728-6732.
            [19]  AMOUX C, KONISHI T, VAN ELSLANDEl E, et al. Polymerization   [38]  ROBINSON A. Electron-beam lithography: Going green with silk[J].
                 photoinitiators with near-resonance enhanced two-photon absorption   Nature Nanotechnology, 2014, 9(4): 251-252.
                 cross-section:  Toward high-resolution photoresist with improved   [39]  BUCCIARELLI A, MULLONI V, MANIGLIO D, et al. A comparative
                 sensitivity[J]. Macromolecules, 2020, 53(21): 9264-9278.   study of the refractive index of silk protein thin films towards biomaterial
            [20]  REISER A, HUANG J P, HE X, et al. The molecular mechanism of   based optical devices[J]. Optical Materials, 2018, 78: 407-414.
                 novolak-diazonaphthoquinone resists[J]. European Polymer Journal,   [40]  SUN Y L, LI Q, SUN S M, et al. Aqueous multiphoton lithography
                 2002, 38(4): 619-629.                             with multifunctional silk-centred bio-resists[J]. Nature Communications,
            [21]  MOON S  Y, KIM J M. Chemistry of  photolithographic imaging   2015, 6: 8612.
                 materials based on the chemical amplification concept[J]. Journal of   [41]  PATAMIA E  D,  OSTROVSKY-SNIDER  N A, MURPHY A  R.
                 Photochemistry and Photobiology C: Photochemistry Reviews, 2007,   Photolithographic masking method  to chemically pattern silk  film
                 8(4): 157-173.                                    surfaces[J]. ACS  Applied Materials & Interfaces, 2019, 11(37):
            [22]  YU J X, XU N, LIU Z P, et al. Novel one-component positive-tone   33612-33619.
                 chemically  amplified I-line molecular glass  photoresists[J]. ACS   [42]  PARK J, LEE S G, MARELLI B, et al. Eco-friendly photolithography
                 Applied Materials & Interfaces, 2012, 4(5): 2591-2596.   using water-developable pure silk fibroin[J]. RSC Advances, 2016,
            [23]  ZHENG X F, JI  C W, LIU J C,  et al. Novel star polymers as   6(45): 39330-39334.
                 chemically amplified positive-tone photoresists for KrF lithography   [43]  LIU W P, ZHANG S Q, LEE W, et al. Wafer-scale high-resolution
                 applications[J]. Industrial & Engineering Chemistry Research, 2018,   patterning of biostructures using silk light chain protein
                 57(19): 6790-6796.                                photolithography[C]//2017 IEEE 30th International Conference on
            [24]  THACKERAY J W. Materials challenges for sub-20-nm lithography[J].   Micro Electro Mechanical Systems (MEMS), IEEE, 2017: 464-467.
                 Journal of Micro/Nanolithography, MEMS,  and MOEMS, 2011,   [44]  LIU W P, ZHOU Z T, ZHANG S Q,  et al. Precise protein
                 10(3): 033009.                                    photolithography (P3): High performance biopatterning  using silk
            [25]  WALLOW T, CIVAY D, WANG S, et al. EUV resist performance:   fibroin light chain as the resist[J]. Advanced Science, 2017, 4(9):
                 Current assessment for  sub-22-nm half-pitch  patterning  on NXE:   1700191.
                 3300[C]//Extreme Ultraviolet  (EUV) Lithography  Ⅲ. International   [45]  JIANG J J, LIU W P, ZHANG S Q, et al. High performance protein
                 Society for Optics and Photonics, 2012: 83221J.   photolithography using photoreactive silk  light chain as  the resist:
            [26]  WU H P, GONSALVES K E. A  novel single-component negative   Material,  method and  mechanism[C]//2017 19th International
                 resist for DUV and electron beam lithography[J]. Advanced Materials,   Conference on Solid-State Sensors, Actuators and Microsystems
                 2001, 13(3): 195-197.                             (TRANSDUCERS), IEEE, 2017: 694-697.
            [27]  TSUCHIDA  E, YAMAMOTO  K, SHOUJI E,  et al. Photochemical   [46]  KURLAND N E, DEY T, WANG C Z, et al. Silk protein lithography
                 recycling of polyarylene sulfide[J]. Chemical Communications, 1996   as a route to fabricate sericin  microarchitectures[J].  Advanced
                 (17): 2091-2092.                                  Materials, 2014, 26(26): 4431-4437.
            [28]  HARYONO  A, MIYATAKE K, TSUCHIDA E.  Synthesis  and   [47]  BUCCIARELLI A, PAL R K, MANIGLIO D, et al. Fabrication of
                 photochemical reaction of polyarylenesulfonium salts[J]. Macromolecular   nanoscale patternable films of silk fibroin using benign solvents[J].
                 Chemistry and Physics, 1999, 200(6): 1257-1267.   Macromolecular Materials and Engineering, 2017, 302(7): 1700110.
            [29]  REDDY P G, PAL S P, KUMAR P, et al. Polyarylenesulfonium salt   [48]  TAO H, KAPLAN D L, OMENETTO F G. Silk materials—A road to
                 as a novel and versatile nonchemically amplified negative tone   sustainable high technology[J]. Advanced Materials, 2012, 24(21):
                 photoresist for high-resolution extreme ultraviolet lithography   2824-2837.
                 applications[J]. ACS Applied Materials & Interfaces, 2017, 9(1):   [49]  KIM S, MARELLE B, BRENCKLE M A,  et al. All-water-based
                 17-21.                                            electron-beam lithography using  silk as a resist[J]. Nature
            [30]  GANGNAIK A S, GEORGIEY Y M, HOLMES J D. New generation   Nanotechnology, 2014, 9(4): 306-310.
                 electron beam resists: A review[J]. Chemistry of Materials, 2017,   [50]  MORIKAWA J, RYU M, MAXIMOVA K,  et al. Silk fibroin as a
                 29(5): 1898-1917.                                 water-soluble bio-resist and its thermal properties[J]. RSC Advances,
            [31]  KOTZ F, ARNOLD K, WAGNER S, et al. Liquid PMMA: A high   2016, 6(14): 11863-11869.
                 resolution polymethylmethacrylate negative photoresist as enabling   [51]  LIU K Y, JIANG J J, ZHOU Z T, et al. Silk: New opportunities for an
                 material for direct printing of microfluidic chips[J].  Advanced   ancient material in MEMS/NEMS[C]//2016 IEEE 29th International
                 Engineering Materials, 2018, 20(2): 1700699.      Conference on Micro Electro Mechanical Systems (MEMS), IEEE,
            [32]  KURLAND N E, DEY T, KUNDU S C, et al. Precise patterning of   2016: 558-560.
                 silk microstructures using photolithography[J]. Advanced Materials,   [52]  ZHANG S Q, QIN N, TAO T H. Extracted natural silk fibroin as a
                 2013, 25(43): 6207-6212.                          dual-tone protein resist for eco-friendly electron beam lithography
            [33]  CHO S  Y,  YUN Y S, LEE S,  et al. Carbonization of a stable   [C]//2017 IEEE 30th  International  Conference on Micro Electro
                 β-sheet-rich silk protein into a pseudographiticpyroprotein[J]. Nature   Mechanical Systems (MEMS), IEEE, 2017: 724-727.
                 Communications, 2015, 6(1): 1-7.              [53]  QIN N,  ZHANG  S Q, JIANG J J,  et al. Nanoscale probing of
            [34]  DICKERSON M  B, DENNIS P B,  TONDIGLIA V P,  et al. 3D   electron-regulated structural transitions in silk proteins by near-field
                 printing of regenerated silk fibroin and antibody-containing   IR imaging and nano-spectroscopy[J]. Nature Communications,
                 microstructures  via  multiphoton lithography[J]. ACS Biomaterials   2016, 7(1): 1-8.
                 Science & Engineering, 2017, 3(9): 2064-2075.   [54]  QIN N,  ZHANG S Q, TAO T H.  Electron regulated 3D
   19   20   21   22   23   24   25   26   27   28   29