Page 24 - 《精细化工》2021年第10期
P. 24
·1954· 精细化工 FINE CHEMICALS 第 38 卷
lithography: Emergent materials and methods of actuation[J]. Nano [35] LIU Z, ZHOU Z T, ZHANG S Q, et al. "Print-to-pattern": Silk-based
Today, 2020, 31: 100838. water lithography[J]. Small, 2018, 14(47): 1802953.
[17] ZHU S H, TANG Y H, LIN C X, et al. Recent advances in patterning [36] APPLEGATE M B, PARTLOW B P, COBURN J, et al.
natural polymers: From nanofabrication techniques to applications[J]. Photocrosslinking of silk fibroin using riboflavin for ocular
Small Methods, 2021, 5(3): 2001060. prostheses[J]. Advanced Materials, 2016, 28(12): 2417-2420.
[18] PARK J, LEE S G, VESTERS Y, et al. Molecular modeling of EUV [37] PEROTTO G, CITTADINI M, TAO H, et al. Fabrication of tunable,
photoresist revealing the effect of chain conformation on line-edge high-refractive-index titanate-silk nanocomposites on the micro- and
roughness formation[J]. Polymers, 2019, 11(12): 1923. nanoscale[J]. Advanced Materials, 2015, 27(42): 6728-6732.
[19] AMOUX C, KONISHI T, VAN ELSLANDEl E, et al. Polymerization [38] ROBINSON A. Electron-beam lithography: Going green with silk[J].
photoinitiators with near-resonance enhanced two-photon absorption Nature Nanotechnology, 2014, 9(4): 251-252.
cross-section: Toward high-resolution photoresist with improved [39] BUCCIARELLI A, MULLONI V, MANIGLIO D, et al. A comparative
sensitivity[J]. Macromolecules, 2020, 53(21): 9264-9278. study of the refractive index of silk protein thin films towards biomaterial
[20] REISER A, HUANG J P, HE X, et al. The molecular mechanism of based optical devices[J]. Optical Materials, 2018, 78: 407-414.
novolak-diazonaphthoquinone resists[J]. European Polymer Journal, [40] SUN Y L, LI Q, SUN S M, et al. Aqueous multiphoton lithography
2002, 38(4): 619-629. with multifunctional silk-centred bio-resists[J]. Nature Communications,
[21] MOON S Y, KIM J M. Chemistry of photolithographic imaging 2015, 6: 8612.
materials based on the chemical amplification concept[J]. Journal of [41] PATAMIA E D, OSTROVSKY-SNIDER N A, MURPHY A R.
Photochemistry and Photobiology C: Photochemistry Reviews, 2007, Photolithographic masking method to chemically pattern silk film
8(4): 157-173. surfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(37):
[22] YU J X, XU N, LIU Z P, et al. Novel one-component positive-tone 33612-33619.
chemically amplified I-line molecular glass photoresists[J]. ACS [42] PARK J, LEE S G, MARELLI B, et al. Eco-friendly photolithography
Applied Materials & Interfaces, 2012, 4(5): 2591-2596. using water-developable pure silk fibroin[J]. RSC Advances, 2016,
[23] ZHENG X F, JI C W, LIU J C, et al. Novel star polymers as 6(45): 39330-39334.
chemically amplified positive-tone photoresists for KrF lithography [43] LIU W P, ZHANG S Q, LEE W, et al. Wafer-scale high-resolution
applications[J]. Industrial & Engineering Chemistry Research, 2018, patterning of biostructures using silk light chain protein
57(19): 6790-6796. photolithography[C]//2017 IEEE 30th International Conference on
[24] THACKERAY J W. Materials challenges for sub-20-nm lithography[J]. Micro Electro Mechanical Systems (MEMS), IEEE, 2017: 464-467.
Journal of Micro/Nanolithography, MEMS, and MOEMS, 2011, [44] LIU W P, ZHOU Z T, ZHANG S Q, et al. Precise protein
10(3): 033009. photolithography (P3): High performance biopatterning using silk
[25] WALLOW T, CIVAY D, WANG S, et al. EUV resist performance: fibroin light chain as the resist[J]. Advanced Science, 2017, 4(9):
Current assessment for sub-22-nm half-pitch patterning on NXE: 1700191.
3300[C]//Extreme Ultraviolet (EUV) Lithography Ⅲ. International [45] JIANG J J, LIU W P, ZHANG S Q, et al. High performance protein
Society for Optics and Photonics, 2012: 83221J. photolithography using photoreactive silk light chain as the resist:
[26] WU H P, GONSALVES K E. A novel single-component negative Material, method and mechanism[C]//2017 19th International
resist for DUV and electron beam lithography[J]. Advanced Materials, Conference on Solid-State Sensors, Actuators and Microsystems
2001, 13(3): 195-197. (TRANSDUCERS), IEEE, 2017: 694-697.
[27] TSUCHIDA E, YAMAMOTO K, SHOUJI E, et al. Photochemical [46] KURLAND N E, DEY T, WANG C Z, et al. Silk protein lithography
recycling of polyarylene sulfide[J]. Chemical Communications, 1996 as a route to fabricate sericin microarchitectures[J]. Advanced
(17): 2091-2092. Materials, 2014, 26(26): 4431-4437.
[28] HARYONO A, MIYATAKE K, TSUCHIDA E. Synthesis and [47] BUCCIARELLI A, PAL R K, MANIGLIO D, et al. Fabrication of
photochemical reaction of polyarylenesulfonium salts[J]. Macromolecular nanoscale patternable films of silk fibroin using benign solvents[J].
Chemistry and Physics, 1999, 200(6): 1257-1267. Macromolecular Materials and Engineering, 2017, 302(7): 1700110.
[29] REDDY P G, PAL S P, KUMAR P, et al. Polyarylenesulfonium salt [48] TAO H, KAPLAN D L, OMENETTO F G. Silk materials—A road to
as a novel and versatile nonchemically amplified negative tone sustainable high technology[J]. Advanced Materials, 2012, 24(21):
photoresist for high-resolution extreme ultraviolet lithography 2824-2837.
applications[J]. ACS Applied Materials & Interfaces, 2017, 9(1): [49] KIM S, MARELLE B, BRENCKLE M A, et al. All-water-based
17-21. electron-beam lithography using silk as a resist[J]. Nature
[30] GANGNAIK A S, GEORGIEY Y M, HOLMES J D. New generation Nanotechnology, 2014, 9(4): 306-310.
electron beam resists: A review[J]. Chemistry of Materials, 2017, [50] MORIKAWA J, RYU M, MAXIMOVA K, et al. Silk fibroin as a
29(5): 1898-1917. water-soluble bio-resist and its thermal properties[J]. RSC Advances,
[31] KOTZ F, ARNOLD K, WAGNER S, et al. Liquid PMMA: A high 2016, 6(14): 11863-11869.
resolution polymethylmethacrylate negative photoresist as enabling [51] LIU K Y, JIANG J J, ZHOU Z T, et al. Silk: New opportunities for an
material for direct printing of microfluidic chips[J]. Advanced ancient material in MEMS/NEMS[C]//2016 IEEE 29th International
Engineering Materials, 2018, 20(2): 1700699. Conference on Micro Electro Mechanical Systems (MEMS), IEEE,
[32] KURLAND N E, DEY T, KUNDU S C, et al. Precise patterning of 2016: 558-560.
silk microstructures using photolithography[J]. Advanced Materials, [52] ZHANG S Q, QIN N, TAO T H. Extracted natural silk fibroin as a
2013, 25(43): 6207-6212. dual-tone protein resist for eco-friendly electron beam lithography
[33] CHO S Y, YUN Y S, LEE S, et al. Carbonization of a stable [C]//2017 IEEE 30th International Conference on Micro Electro
β-sheet-rich silk protein into a pseudographiticpyroprotein[J]. Nature Mechanical Systems (MEMS), IEEE, 2017: 724-727.
Communications, 2015, 6(1): 1-7. [53] QIN N, ZHANG S Q, JIANG J J, et al. Nanoscale probing of
[34] DICKERSON M B, DENNIS P B, TONDIGLIA V P, et al. 3D electron-regulated structural transitions in silk proteins by near-field
printing of regenerated silk fibroin and antibody-containing IR imaging and nano-spectroscopy[J]. Nature Communications,
microstructures via multiphoton lithography[J]. ACS Biomaterials 2016, 7(1): 1-8.
Science & Engineering, 2017, 3(9): 2064-2075. [54] QIN N, ZHANG S Q, TAO T H. Electron regulated 3D