Page 207 - 《精细化工》2021年第11期
P. 207

第 11 期                 牛   静,等:  微米级 P-Si@a-TiO 2 负极材料的制备及电化学性能                         ·2353·


                                                                   silicon electrodes for lithium-ion batteries[J]. Journal of Power
                                                                   Sources, 2020, 454: 227907.
                                                               [4]   ZHU C Y, ZHANG Y, MA  Z  H, et al. Yolk-void-shell Si-C nano-
                                                                   particles with tunable void  size for  high-performance  anode of
                                                                   lithium ion batteries[J]. Nanotechnology, 2021, 32(8): 085403.
                                                               [5]   XIE J, TONG L, SU L W, et al. Core-shell yolk-shell Si@C@void@C
                                                                   nanohybrids as advanced lithium ion battery anodes with good
                                                                   electronic conductivity and corrosion resistance[J]. Journal of Power
                                                                   Sources, 2017, 342: 529-536.
                                                               [6]   CHEN X  D (陈修栋), YAN P (严平), LIU J H (刘金杭),  et al.
                                                                   Preparation and electrochemical performances of granular nickel
                                                                   molybdate anode  material[J]. Fine Chemical (精细化工), 2021,
                                                                   38(3): 554-558.
                                                               [7]   CHEN J J,  LU  X  Y, SUN J,  et al. Si@C nanosponges application
                                                                   for lithium ions batteries synthesized by templated magnesiothermic
            图 10  P-Si@1a-TiO 2 、P-Si@2a-TiO 2 和 P-Si@3a-TiO 2 电极
                                                                   route[J]. Materials Letters, 2015, 152: 256-259.
                  循环前(a、c、e)和循环后(b、d、f)的 SEM 图                 [8]   WU J L, LIU J  H, WANG Z,  et al. N-doped gel-structures for
            Fig. 10  SEM images of P-Si@1a-TiO 2 , P-Si@2a-TiO 2  and   construction of long cycling Si anodes at high current densities for
                    P-Si@3a-TiO 2  electrodes before cycle test (a, c, e)   high performance lithium-ion batteries[J]. Journal of Materials
                    and after cycle test (b, d, f)                 Chemistry A, 2019, 7: 11347-11354.
                                                               [9]   LI J W, ZHOU A J, LIU X Q, et al. Si nanowire anode prepared by
                 由图 10 可知,循环实验前的电极形貌表面较为                           chemical etching  for  high energy density lithium-ion battery[J].
                                                                   Journal of Inorganic Materials, 2013, 28(11): 1207-1212.
            粗糙,有球形的颗粒物。经过循环测试后,表面变
                                                               [10]  CHEN M, LI  B,  LIU X J,  et al. Boron-doped porous Si anode
            得致密,但是出现了不同程度的裂纹。P-Si@1a-TiO 2                         materials with high initial coulombic efficiency  and long cycling
            电极表面出现大量的细裂纹,P-Si@3a-TiO 2 电极表                         stability[J]. Journal of Materials Chemistry A, 2018, 6: 3022-3027.
                                                               [11]  GENG L Y, YANG D D, GAO S L, et al. Facile fabrication of porous
            面则出现了明显的局部崩塌和粉化现象,分析认为                                 Si microspheres from low-cost precursors for high-capacity electrode[J].
            是过厚的缓冲层使得多孔结构不能更好地发挥作                                  Advanced Materials Interfaces, 2019, 43(46): 18220-18228.
                                                               [12]  SU J M, ZHANG  C C, CHEN X,  et al. Carbon-shell-constrained
            用,使得内部的应力无法及时释放。P-Si@2a-TiO 2
                                                                   silicon cluster derived from Al-Si alloy as long-cycling life lithium
            电极较为完好,表面相对平坦,观察到少量细裂纹,                                ion batteries anode[J]. Journal of Power Sources, 2018, 381: 66-71.
            归因于适当厚度的非晶态 TiO 2 包覆层不仅有利于缓                        [13]  REN W F, WANG Y H, ZHANG Z L, et al. Carbon-coated porous
                                                                   silicon composites as high  performance Li-ion  battery anode
            冲体积膨胀,而且可以防止内部的 Si 核直接接触电                              materials: Can the production process be cheaper and  greener[J].
            解液,从而获得极佳的循环持久性。                                       Journal of Materials Chemistry A, 2016, 4: 552-560.
                                                               [14]  ZHAO S, XU Y,  XIAN X C,  et al. Fabrication of porous Si@C
            3   结论                                                 composites with core-shell structure  and their electrochemical
                                                                   performance for Li-ion batteries[J]. Batteries-Basel, 2019, 5(1): 27.
                                                               [15]  YAN Z, GUO J C. High-performance silicon-carbon anode material
                 本研究尝试了无定形 TiO 2 包覆微米多孔 Si 的                       via aerosol spray drying and magnesiothermic reduction[J]. Nano
            工作,证实了这种结构的可靠性。通过调控包覆层                                 Energy, 2019, 63: 103845.
                                                               [16]  WANG  K,  XUE B, TAN Y,  et al.  Recycling of micron-mized Si
            的厚度,可使其在缓冲体积膨胀与提高电化学性能
                                                                   powder waste from diamond wire cutting and its application in Li-ion
            方面达到平衡。测所得的最佳包覆层约为 10 nm,                              battery anodes[J]. Journal of Cleaner Production, 2019, 239: 117997.
            制备的复合材料在 1.0 A/g 电流密度下循环 50 次后,                    [17]  WANG  K, TAN Y, LI P T,  et al. Recycling Si waste cut from
                                                                   diamond wire into high performance porous Si@SiO 2@C anodes for
            放电比容量为 1357.4 mA·h/g。后续将在该结构的基                         Li-ion battery[J]. Journal of Hazardous Materials, 2020, 407: 124778.
            础上再进行碳包覆,进一步改善 Si 的体积膨胀和导                          [18]  WANG K, TAN Y, LI P T,  et al. Facile synthesis of double-layer-
                                                                   constrained micron-sized porous Si/SiO 2/C composites for lithium-ion
            电性差的问题,得到电化学性能更优的负极材料。
                                                                   battery anodes[J]. ACS Applied Materials & Interfaces, 2019, 11:
                                                                   37732-37740.
            参考文献:                                              [19]  HWA  Y, KIM W S,  YU B  C,  et al. Facile synthesis of Si/TiO 2
            [1]   LIANG Z W (梁紫薇), JIANG R L (蒋荣立), MU L X (穆丽雪), et   (anatase) core-shell nanostructured anodes for rechargeable Li-ion
                 al. Synthesis and electrochemical properties of Li 4Ti 5O 12/Fe 3O 4   batteries[J]. Journal of Electroanalytical Chemistry, 2014, 712:
                 composite[J]. Fine Chemicals (精细化工), 2020, 37(3): 579-583.     202-206.
            [2]   HUA Z (华政), LIANG F (梁风), YAO Y  C (姚耀春). Status and   [20]  YANG J P, WANG Y X, LI W, et al. Amorphous TiO 2 shells: A vital
                 development trend for battery of electric vehicles[J].  Chemical   elastic buffering layer on silicon nanoparticles for high-performance
                 Industry and Engineering Progress (化工进展), 2017, 36(8):  2874-   and safe lithium storage[J]. Advanced Materials, 2017, 29: 1700523.
                 2881.                                         [21]  ZHENG Y, NING L, XUN T J, et al. TiO 2 coated Si/C interconnected
            [3]   SUN S,  HE D L,  LI P,  et al. Improved adhesion of cross-linked   microsphere with stable framework and interface for high-rate lithium
                 binder and SiO 2-coating enhances structural and cyclic stability of     storage[J]. Chemical Engineering Journal, 2018, 347: 214-222.
   202   203   204   205   206   207   208   209   210   211   212