Page 60 - 《精细化工》2021年第11期
P. 60

·2206·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 Science, 2015, 358: 5-27.                     [21]  YANG F, LIU D Z, LI Y X, et al. Salt-template-assisted construction
            [2]   LI S Q (李士琦), JI S J (季淑娟). Clean energy metallurgy and clean   of honeycomb-like structured g-C 3N 4 with tunable band structure for
                 energy hydrogen production experiment[J]. Metal World (金属世界),   enhanced photocatalytic H 2 production[J]. Applied Catalysis B:
                 2019, 6: 73-78.                                   Environmental, 2019, 240: 64-71.
            [3]   GAO X B (高晓斌), ZHANG C L (张聪玲), GAO F (高帆), et al.   [22]  YANG  L  Q,  HUANG J F, SHI L, et  al. A surface  modification
                 Comprehensive utilization of  hydrogen  in petrochemical enterprises[J].   resultant thermally oxidized porous g-C 3N 4 with enhanced photocatalytic
                 Technology and Development of Chemical Industry (化工技术与开  hydrogen production[J]. Applied Catalysis B: Environmental, 2017,
                 发), 2012, 41(5): 58-59.                           204: 335-345.
            [4]   SHEN C (沈承), NING T (宁涛). Preparation and storage research of   [23]  WANG B, CAI H  R,  ZHAO D M, et  al. Enhanced photocatalytic
                 hydrogen used for fuel cell[J]. Energy Engineering (金属世界),   hydrogen evolution by partially replaced corner-site C atom with P in
                 2011, (1): 1-7.                                   g-C 3N 4[J]. Applied Catalysis B: Environmental, 2019, 244: 486-493.
            [5]   YANG Y X (杨延翔),  WEI S X  (魏寿祥), LI Q  X (李庆勋).   [24]  SUN M,  LIU H  J, QU J H, et  al. Earth-rich transition metal
                 Suggestions for China's  hydrogen energy industry development[J].   phosphide for energy conversion and  storage[J]. Advanced Energy
                 Petroleum and Petrochemical to DAY (当代石油化工), 2019, 11:   Materials, 2016, 6(13): 1-34.
                 6-8, 42.                                      [25]  ZHU Y  P, REN  T  Z, YUAN  Z Y. Mesoporous  phosphorus-doped
            [6]   CAO F (曹蕃), CHEN K Y (陈坤洋), GUO T T (郭婷婷), et al.   g-C 3N 4 nanostructured flowers with superior photocatalytic hydrogen
                 Research on technological path of hydrogen energy industry   evolution performance[J]. ACS Appl Mater Interfaces, 2015, 7(30):
                 development[J]. Distributed Energy (分布式能源), 2020, 5(1): 1-8.       16850-16856.
            [7]   FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a   [26]  GONG Y  T, LI  M M, LI  H  R, et al. Graphitic carbon nitride
                 semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.   polymers: Promising catalysts or catalyst supports for heterogeneous
            [8]   JAFARI T, MOHARRERI E, AMIN A S, et al. Photocatalytic water   oxidation and hydrogenation[J]. Green Chemistry, 2015, 17(2): 715-736.
                 splitting-the untamed dream: A review of recent advances[J].   [27]  WANG Y P,  LI Y K, ZHAO J L, et al. g-C 3N 4/B doped g-C 3N 4
                 Molecules, 2016, 21(7): 900.                      quantum dots heterojunction photocatalysts for hydrogen evolution
            [9]   HE K, WANG M, GUO L J. Novel-CdS-nanorod with stacking fault   under visible light[J]. International Journal of Hydrogen Energy,
                 structures: Preparation and properties of visible-light-driven photocatalytic   2018, 44(2): 618-628.
                 hydrogen production from water[J].  Chemical Engineering Journal,   [28]  WANG J H, CHEN Y L, SHEN Y F, et al. Coupling polymorphic
                 2015, 279: 747-756.                               nanostructured carbon nitrides into an isotype heterojunction with
            [10]  WEN J Q, XIE J, CHEN X B, et al. A review on g-C 3N 4-based   boosted photocatalytic H 2  evolution[J]. Chem Commun  (Camb),
                 photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123.   2017, 53(20): 2978-2981.
            [11]  ZHANG J S, GUO F S,  WANG  X  C.  An optimized  and general   [29]  YAN Q, HUANG G F, LI D F, et al. Facile synthesis and superior
                 synthetic strategy for fabrication  of  polymeric carbon  nitride   photocatalytic and electrocatalytic performances of porous B-doped
                 nanoarchitectures[J]. Advanced Functional Materials, 2013, 23(23):   g-C 3N 4 nanosheets[J]. Journal of Materials Science &  Technology,
                 3008-3014.                                        2018, 34(12): 2515-2520.
            [12]  XIAO Y T, TIAN G H, LI W, et al. Molecule self-assembly synthesis   [30]  JIANG L  B, YUAN X Z, ZENG G  M, et al. Nitrogen  self-doped
                 of porous few-layer carbon nitride for highly efficient photoredox   g-C 3N 4  nanosheets with tunable band  structures  for enhanced
                 catalysis[J]. Journal of the American Chemical Society, 2019, 141(6):   photocatalytic tetracycline degradation[J]. Journal of Colloid and
                 2508-2515.                                        Interface Science, 2019, 536: 17-29.
            [13]  SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow   [31]  CHU S, WANG  Y, GUO  Y, et  al. Band structure engineering of
                 semiconductor nanospheres as photosynthetic nanoparticles[J].   carbon nitride: In search of a polymer photocatalyst with high
                 Nature Communications, 2012, 3(1): 711-714.       photooxidation property[J]. ACS Catalysis, 2013, 3(5): 912-919.
            [14]  WANG H Q, MIYAUCHI M, ISHIKAWA Y, et al. Single-crystalline   [32]  MAEDA  K, XIONG A K,  YOSHINAGA T, et al. Photocatalytic
                 rutile TiO 2 hollow spheres: Room-temperature synthesis, tailored   overall water splitting promoted by two different cocatalysts for
                 visible-light-extinction, and effective scattering layer for  quantum   hydrogen and oxygen evolution under visible light[J]. Angew Chem
                 dot-sensitized solar cells[J]. J Am  Chem Soc, 2011, 133(47):   Int Ed Engl, 2010, 49(24): 4096-4099.
                 19102-19109.                                  [33]  ZHANG G G, ZHANG M W, YE X X, et al. Iodine modified carbon
            [15]  NIU P,  ZHANG  L L, LIU G, et al.  Graphene-like carbon nitride   nitride semiconductors as visible light photocatalysts for  hydrogen
                 nanosheets for improved photocatalytic activities[J]. Advanced   evolution[J]. Advanced Materials, 2014, 26(5): 805-809.
                 Functional Materials, 2012, 22(22): 4763-4770.   [34]  HONG J D, WANG Y S, WANG  Y B, et al. Noble-metal-free
            [16]  HAN Q, WANG B, GAO  J, et  al.  Atomically thin mesoporous   NiS/C 3N 4 for efficient photocatalytic hydrogen evolution from
                 nanomesh of graphitic C 3N 4 for high-efficiency photocatalytic   water[J]. ChemSusChem, 2013, 6(12): 2263-2268.
                 hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751.   [35]  CAO S  W, YU J G. g-C 3N 4-based  photocatalysts for hydrogen
            [17]  LIANG Q H, LI  Z, HUANG Z H, et  al. Holey graphitic carbon   generation[J]. J Phys Chem Lett, 2014, 5(12): 2101-2107.
                 nitride nanosheets with carbon  vacancies for  highly improved   [36]  GE L, ZUO F, LIU J K, et al. Synthesis and efficient visible light
                 photocatalytic hydrogen production[J]. Advanced Functional Materials,   photocatalytic hydrogen evolution of polymeric g-C 3N 4 coupled with
                 2015, 25(44): 6885-6892.                          CdS quantum dots[J]. The Journal of  Physical Chemistry C, 2012,
            [18]  IQBAL W, QIU  B C, LEI J  Y, et al. One-step large-scale highly   116(25): 13708-13714.
                 active g-C 3N 4 nanosheets for efficient sunlight-driven photocatalytic   [37]  LI X F, ZHANG J, SHEN L H, et al. Preparation and characterization
                 hydrogen production[J]. Dalton Transactions, 2017, 46(32): 10678-10684.   of graphitic carbon nitride through pyrolysis of melamine[J]. Applied
            [19]  WU M, GONG  Y S, NIE T, et al. Template-free synthesis  of   Physics A, 2008, 94(2): 387-392.
                 nanocage-like g-C 3N 4 with high surface area and nitrogen defects for   [38]  LIANG  Q, JIN J, LIU  C  H, et  al. Fabrication of the ternary
                 enhanced photocatalytic H 2 activity[J]. Journal  of  Materials   heterojunction Cd 0.5Zn 0.5S@UIO-66@g-C 3N 4 for enhanced visible-light
                 Chemistry A, 2019, 7(10): 5324-5332.              photocatalytic hydrogen evolution and degradation of organic
            [20]  GUO S E, TANG Y Q, XIE Y, et al. P-doped tubular g-C 3N 4 with   pollutants[J]. Inorganic Chemistry Frontiers, 2018, 5(2): 335-343.
                 surface carbon  defects: Universal  synthesis and enhanced  visible-light   [39]  CHU J Y, HAN X  J, YU Z, et al. Highly efficient visible-light-driven
                 photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,   photocatalytic hydrogen  production on CdS/Cu 7S 4/g-C 3N 4 ternary
                 2017, 218: 664-671.                               heterostructures[J]. ACS  Appl Mater Interfaces, 2018, 10(24):
   55   56   57   58   59   60   61   62   63   64   65