Page 60 - 《精细化工》2021年第11期
P. 60
·2206· 精细化工 FINE CHEMICALS 第 38 卷
Science, 2015, 358: 5-27. [21] YANG F, LIU D Z, LI Y X, et al. Salt-template-assisted construction
[2] LI S Q (李士琦), JI S J (季淑娟). Clean energy metallurgy and clean of honeycomb-like structured g-C 3N 4 with tunable band structure for
energy hydrogen production experiment[J]. Metal World (金属世界), enhanced photocatalytic H 2 production[J]. Applied Catalysis B:
2019, 6: 73-78. Environmental, 2019, 240: 64-71.
[3] GAO X B (高晓斌), ZHANG C L (张聪玲), GAO F (高帆), et al. [22] YANG L Q, HUANG J F, SHI L, et al. A surface modification
Comprehensive utilization of hydrogen in petrochemical enterprises[J]. resultant thermally oxidized porous g-C 3N 4 with enhanced photocatalytic
Technology and Development of Chemical Industry (化工技术与开 hydrogen production[J]. Applied Catalysis B: Environmental, 2017,
发), 2012, 41(5): 58-59. 204: 335-345.
[4] SHEN C (沈承), NING T (宁涛). Preparation and storage research of [23] WANG B, CAI H R, ZHAO D M, et al. Enhanced photocatalytic
hydrogen used for fuel cell[J]. Energy Engineering (金属世界), hydrogen evolution by partially replaced corner-site C atom with P in
2011, (1): 1-7. g-C 3N 4[J]. Applied Catalysis B: Environmental, 2019, 244: 486-493.
[5] YANG Y X (杨延翔), WEI S X (魏寿祥), LI Q X (李庆勋). [24] SUN M, LIU H J, QU J H, et al. Earth-rich transition metal
Suggestions for China's hydrogen energy industry development[J]. phosphide for energy conversion and storage[J]. Advanced Energy
Petroleum and Petrochemical to DAY (当代石油化工), 2019, 11: Materials, 2016, 6(13): 1-34.
6-8, 42. [25] ZHU Y P, REN T Z, YUAN Z Y. Mesoporous phosphorus-doped
[6] CAO F (曹蕃), CHEN K Y (陈坤洋), GUO T T (郭婷婷), et al. g-C 3N 4 nanostructured flowers with superior photocatalytic hydrogen
Research on technological path of hydrogen energy industry evolution performance[J]. ACS Appl Mater Interfaces, 2015, 7(30):
development[J]. Distributed Energy (分布式能源), 2020, 5(1): 1-8. 16850-16856.
[7] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a [26] GONG Y T, LI M M, LI H R, et al. Graphitic carbon nitride
semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. polymers: Promising catalysts or catalyst supports for heterogeneous
[8] JAFARI T, MOHARRERI E, AMIN A S, et al. Photocatalytic water oxidation and hydrogenation[J]. Green Chemistry, 2015, 17(2): 715-736.
splitting-the untamed dream: A review of recent advances[J]. [27] WANG Y P, LI Y K, ZHAO J L, et al. g-C 3N 4/B doped g-C 3N 4
Molecules, 2016, 21(7): 900. quantum dots heterojunction photocatalysts for hydrogen evolution
[9] HE K, WANG M, GUO L J. Novel-CdS-nanorod with stacking fault under visible light[J]. International Journal of Hydrogen Energy,
structures: Preparation and properties of visible-light-driven photocatalytic 2018, 44(2): 618-628.
hydrogen production from water[J]. Chemical Engineering Journal, [28] WANG J H, CHEN Y L, SHEN Y F, et al. Coupling polymorphic
2015, 279: 747-756. nanostructured carbon nitrides into an isotype heterojunction with
[10] WEN J Q, XIE J, CHEN X B, et al. A review on g-C 3N 4-based boosted photocatalytic H 2 evolution[J]. Chem Commun (Camb),
photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123. 2017, 53(20): 2978-2981.
[11] ZHANG J S, GUO F S, WANG X C. An optimized and general [29] YAN Q, HUANG G F, LI D F, et al. Facile synthesis and superior
synthetic strategy for fabrication of polymeric carbon nitride photocatalytic and electrocatalytic performances of porous B-doped
nanoarchitectures[J]. Advanced Functional Materials, 2013, 23(23): g-C 3N 4 nanosheets[J]. Journal of Materials Science & Technology,
3008-3014. 2018, 34(12): 2515-2520.
[12] XIAO Y T, TIAN G H, LI W, et al. Molecule self-assembly synthesis [30] JIANG L B, YUAN X Z, ZENG G M, et al. Nitrogen self-doped
of porous few-layer carbon nitride for highly efficient photoredox g-C 3N 4 nanosheets with tunable band structures for enhanced
catalysis[J]. Journal of the American Chemical Society, 2019, 141(6): photocatalytic tetracycline degradation[J]. Journal of Colloid and
2508-2515. Interface Science, 2019, 536: 17-29.
[13] SUN J H, ZHANG J S, ZHANG M W, et al. Bioinspired hollow [31] CHU S, WANG Y, GUO Y, et al. Band structure engineering of
semiconductor nanospheres as photosynthetic nanoparticles[J]. carbon nitride: In search of a polymer photocatalyst with high
Nature Communications, 2012, 3(1): 711-714. photooxidation property[J]. ACS Catalysis, 2013, 3(5): 912-919.
[14] WANG H Q, MIYAUCHI M, ISHIKAWA Y, et al. Single-crystalline [32] MAEDA K, XIONG A K, YOSHINAGA T, et al. Photocatalytic
rutile TiO 2 hollow spheres: Room-temperature synthesis, tailored overall water splitting promoted by two different cocatalysts for
visible-light-extinction, and effective scattering layer for quantum hydrogen and oxygen evolution under visible light[J]. Angew Chem
dot-sensitized solar cells[J]. J Am Chem Soc, 2011, 133(47): Int Ed Engl, 2010, 49(24): 4096-4099.
19102-19109. [33] ZHANG G G, ZHANG M W, YE X X, et al. Iodine modified carbon
[15] NIU P, ZHANG L L, LIU G, et al. Graphene-like carbon nitride nitride semiconductors as visible light photocatalysts for hydrogen
nanosheets for improved photocatalytic activities[J]. Advanced evolution[J]. Advanced Materials, 2014, 26(5): 805-809.
Functional Materials, 2012, 22(22): 4763-4770. [34] HONG J D, WANG Y S, WANG Y B, et al. Noble-metal-free
[16] HAN Q, WANG B, GAO J, et al. Atomically thin mesoporous NiS/C 3N 4 for efficient photocatalytic hydrogen evolution from
nanomesh of graphitic C 3N 4 for high-efficiency photocatalytic water[J]. ChemSusChem, 2013, 6(12): 2263-2268.
hydrogen evolution[J]. ACS Nano, 2016, 10(2): 2745-2751. [35] CAO S W, YU J G. g-C 3N 4-based photocatalysts for hydrogen
[17] LIANG Q H, LI Z, HUANG Z H, et al. Holey graphitic carbon generation[J]. J Phys Chem Lett, 2014, 5(12): 2101-2107.
nitride nanosheets with carbon vacancies for highly improved [36] GE L, ZUO F, LIU J K, et al. Synthesis and efficient visible light
photocatalytic hydrogen production[J]. Advanced Functional Materials, photocatalytic hydrogen evolution of polymeric g-C 3N 4 coupled with
2015, 25(44): 6885-6892. CdS quantum dots[J]. The Journal of Physical Chemistry C, 2012,
[18] IQBAL W, QIU B C, LEI J Y, et al. One-step large-scale highly 116(25): 13708-13714.
active g-C 3N 4 nanosheets for efficient sunlight-driven photocatalytic [37] LI X F, ZHANG J, SHEN L H, et al. Preparation and characterization
hydrogen production[J]. Dalton Transactions, 2017, 46(32): 10678-10684. of graphitic carbon nitride through pyrolysis of melamine[J]. Applied
[19] WU M, GONG Y S, NIE T, et al. Template-free synthesis of Physics A, 2008, 94(2): 387-392.
nanocage-like g-C 3N 4 with high surface area and nitrogen defects for [38] LIANG Q, JIN J, LIU C H, et al. Fabrication of the ternary
enhanced photocatalytic H 2 activity[J]. Journal of Materials heterojunction Cd 0.5Zn 0.5S@UIO-66@g-C 3N 4 for enhanced visible-light
Chemistry A, 2019, 7(10): 5324-5332. photocatalytic hydrogen evolution and degradation of organic
[20] GUO S E, TANG Y Q, XIE Y, et al. P-doped tubular g-C 3N 4 with pollutants[J]. Inorganic Chemistry Frontiers, 2018, 5(2): 335-343.
surface carbon defects: Universal synthesis and enhanced visible-light [39] CHU J Y, HAN X J, YU Z, et al. Highly efficient visible-light-driven
photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, photocatalytic hydrogen production on CdS/Cu 7S 4/g-C 3N 4 ternary
2017, 218: 664-671. heterostructures[J]. ACS Appl Mater Interfaces, 2018, 10(24):