Page 61 - 《精细化工》2021年第11期
P. 61
第 11 期 王立志,等: g-C 3 N 4 在光催化制氢领域的研究进展:如何促进光吸收和载流子的分离传输 ·2207·
20404-20411. array as a stable anode for oxygen evolution and electrochemical
[40] ZHANG X, DONG H, SUN X J, et al. Step-by-step improving wastewater treatment[J]. ACS Catal, 2018, 8(5): 4278-4287.
photocatalytic hydrogen evolution activity of NH 2-UiO-66 by [59] GE J H, LIU Y J, JIANG D C, et al. Integrating non-precious-metal
constructing heterojunction and encapsulating carbon nanodots[J]. cocatalyst Ni 3N with g-C 3N 4 for enhanced photocatalytic H 2
ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11563-11569. production in water under visible-light irradiation[J]. Chinese Journal
[41] GU Z G, LI D J, ZHENG C, et al. MOF-templated synthesis of of Catalysis, 2019, 40(2): 160-167.
ultrasmall photoluminescent carbon-nanodot arrays for optical [60] LUO J J, ZHAO D, YANG M H, et al. Porous Ni 3N nanosheet array
applications[J]. Angew Chem Int Ed Engl, 2017, 56(24): 6853-6858. as a catalyst for nonenzymatic amperometric determination of
[42] QIN J Y, HUO J P, ZHANG P Y, et al. Improving photocatalytic glucose[J]. Mikrochim Acta, 2018, 185(4): 229.
hydrogen production of Ag/g-C 3N 4 nanocomposites by dye-sensitization [61] SUN Z C, ZHU M S, FUJITSUKA M, et al. Phase effect of Ni xP y
under visible light irradiation[J]. Nanoscale, 2015, 8(4): 2249-2259. hybridized with g-C 3N 4 for photocatalytic hydrogen generation[J].
[43] BING W, CHEN Z W, SUN H J, et al. Visible-light-driven enhanced ACS Appl Mater Interfaces, 2017, 9(36): 30583-30590.
antibacterial and biofilm elimination activity of graphitic carbon [62] JIANG P, LIU Q, SUN X P. NiP 2 nanosheet arrays supported on
nitride by embedded Ag nanoparticles[J]. Nano Research, 2015, 8(5): carbon cloth: An efficient 3D hydrogen evolution cathode in both
1648-1658. acidic and alkaline solutions[J]. Nanoscale, 2014, 6(22): 13440-13445.
[44] ZHU Y Q, WANG T, XU T, et al. Size effect of Pt co-catalyst on [63] ZENG D, ZHOU T, ONG W J, et al. Sub-5 nm ultra-fine FeP
photocatalytic efficiency of g-C 3N 4 for hydrogen evolution[J]. nanodots as efficient co-catalysts modified porous g-C 3N 4 for
Applied Surface Science, 2019, 464: 36-42. precious-metal-free photocatalytic hydrogen evolution under visible
[45] HAN X, XU D Y, AN L, et al. Ni-Mo nanoparticles as co-catalyst for light[J]. ACS Appl Mater Interfaces, 2019, 11(6): 5651-5660.
drastically enhanced photocatalytic hydrogen production activity over [64] XIA Y, LI Q, LV K L, et al. Superiority of graphene over carbon
g-C 3N 4[J]. Applied Catalysis B: Environmental, 2019, 243: 136-144. analogs for enhanced photocatalytic H 2-production activity of
[46] CAO S W, HUANG Q, ZHU B C, et al. Trace-level phosphorus and ZnIn 2S 4[J]. Applied Catalysis B: Environmental, 2017, 206: 344-352.
sodium co-doping of g-C 3N 4 for enhanced photocatalytic H 2 [65] AN X Q, LI K, TANG J. Cu 2O/reduced graphene oxide composites
production[J]. Journal of Power Sources, 2017, 351: 151-159. for the photocatalytic conversion of CO 2[J]. ChemSusChem, 2014,
[47] ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials: 7(4): 1086-1093.
Controllable synthesis and applications in fuel cells and [66] XU Q L, ZHU B C, JIANG C J, et al. Constructing 2D/2D
photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): Fe 2O 3/g-C 3N 4 direct Z-scheme photocatalysts with enhanced H 2
36-42. generation performance[J]. Solar RRL, 2018, 2(3): 1800006.
[48] CAO S W, YUAN Y P, FANG J, et al. In-situ growth of CdS [67] SHE X J, WU J J, XU H, et al. High efficiency photocatalytic water
quantum dots on g-C 3N 4 nanosheets for highly efficient photocatalytic splitting using 2D α-Fe 2O 3/g-C 3N 4 Z-scheme catalysts[J]. Advanced
hydrogen generation under visible light irradiation[J]. International Energy Materials, 2017, 7(17): 1700025.
Journal of Hydrogen Energy, 2013, 38(3): 1258-1266. [68] XU K, XU H, FENG G W, et al. Photocatalytic hydrogen evolution
[49] ZHANG J Y, WANG Y H, JIN J, et al. Efficient visible-light performance of NiS cocatalyst modified LaFeO 3/g-C 3N 4 heterojunctions[J].
photocatalytic hydrogen evolution and enhanced photostability of New Journal of Chemistry, 2017, 41(23): 14602-14609.
core/shell CdS/g-C 3N 4 nanowires[J]. ACS Appl Mater Interfaces, [69] YU H, XU J, YIN C J, et al. Significant improvement of
2013, 5(20): 10317-10324. photocatalytic hydrogen evolution rate over g-C 3N 4 with loading
[50] FU J, CHANG B B, TIAN Y L, et al. Novel C 3N 4-CdS composite CeO 2@Ni 4S 3[J]. Journal of Solid State Chemistry, 2019, 272: 102-112.
photocatalysts with organic-inorganic heterojunctions: In situ [70] RAJAMANICKAM D, DHATSHANAMURTHI P, SHANTHI M.
synthesis, exceptional activity, high stability and photocatalytic Enhanced photocatalytic efficiency of NiS/TiO 2 composite catalysts
mechanism[J]. Journal of Materials Chemistry A, 2013, 1(9): using sunset yellow, an azo dye under day light illumination[J].
3083-3090. Materials Research Bulletin, 2015, 61: 439-447.
[51] PAN J Q, DONG Z J, WANG B B, et al. The enhancement of [71] LI W, MA Q, WANG X, et al. Hydrogen evolution by catalyzing
3+
photocatalytic hydrogen production via Ti self-doping black water splitting on two-dimensional g-C 3N 4-Ag/AgBr heterostructure[J].
TiO 2/g-C 3N 4 hollow core-shell nano-heterojunction[J]. Applied Applied Surface Science, 2019, 494: 275-284.
Catalysis B: Environmental, 2019, 242: 92-99. [72] LI W, HE S A, XU W, et al. Synthesis of recyclable magnetic
[52] LU Y, YIN W J, PENG K L, et al. Self-hydrogenated shell promoting mesoporous RH-FSBA photoelectrocatalyst with double cavity
photocatalytic H 2 evolution on anatase TiO 2[J]. Nature Communications, structure[J]. Electrochimica Acta, 2018, 284: 647-654.
2018, 9(1): 2752. [73] GE L, HAN C C. Synthesis of MWNTs/g-C 3N 4 composite photocatalysts
[53] WANG J, WANG G H, WANG X, et al. 3D/2D direct Z-scheme with efficient visible light photocatalytic hydrogen evolution activity[J].
heterojunctions of hierarchical TiO 2 microflowers/g-C 3N 4 nanosheets Applied Catalysis B: Environmental, 2012, 117/118: 268-274.
with enhanced charge carrier separation for photocatalytic H 2 [74] WANG R, GU L N, ZHOU J J, et al. Quasi-polymeric metal-organic
evolution[J]. Carbon, 2019, 149: 618-626. framework UiO-66/g-C 3N 4 heterojunctions for enhanced photocatalytic
[54] LI Y H, LYU K L, HO W K, et al. Hybridization of rutile TiO 2 hydrogen evolution under visible light irradiation[J]. Advanced
(rTiO 2) with g-C 3N 4 quantum dots (CN QDs): An efficient Materials Interfaces, 2015, 2(10): 1500037-1500042.
visible-light- driven Z-scheme hybridized photocatalyst[J]. Applied [75] LIU Y N, SHEN C C, JIANG N, et al. g-C 3N 4 Hydrogen-bonding
Catalysis B: Environmental, 2017, 202: 611-619. viologen for significantly enhanced visible-light photocatalytic H 2
[55] YU Y M, GENG J F, LI H, et al. Exceedingly high photocatalytic evolution[J]. ACS Catalysis, 2017, 7(12): 8228-8234.
activity of g-C 3N 4/Gd-N-TiO 2 composite with nanoscale heterojunctions[J]. [76] VISAI L, DE NARDO L, PUNTA C, et al. Titanium oxide
Solar Energy Materials and Solar Cells, 2017, 168: 91-99. antibacterial surfaces in biomedical devices[J]. Int J Artif Organs,
[56] YU Y M, LI H, PIAO L J, et al. Synthesis of Gd-N codoped porous 2011, 34(9): 929-946.
TiO 2 photocatalyst and its enhanced photocatalytic activities[J]. [77] CAO S W, YUAN Y P, FANG J, et al. In-situ growth of CdS
Chemical Research in Chinese Universities, 2016, 32(6): 1038-1044. quantum dots on g-C 3N 4 nanosheets for highly efficient
[57] XIAO L M, LIU T F, ZHANG M, et al. Interfacial construction of photocatalytic hydrogen generation under visible light irradiation[J].
0D/1D g-C 3N 4 nanoparticles/TiO 2 nanotube arrays with Z-scheme International Journal of Hydrogen Energy, 2013, 38(3): 1258-1266.
heterostructure for improved photoelectrochemical water splitting[J]. [78] KAWAUCHI T, OGUCHI Y, NAGAI K, et al. Conical gradient
ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2489-2491. junctions of dendritic viologen arrays on electrodes[J]. Sci Rep,
[58] YANG Y, KAO L C, LIU Y, et al. Cobalt-doped black TiO 2 nanotube 2015, (5): 11122.