Page 61 - 《精细化工》2021年第11期
P. 61

第 11 期       王立志,等: g-C 3 N 4 在光催化制氢领域的研究进展:如何促进光吸收和载流子的分离传输                            ·2207·


                 20404-20411.                                      array  as a stable  anode for oxygen evolution and electrochemical
            [40]  ZHANG  X, DONG H, SUN X J, et al. Step-by-step improving   wastewater treatment[J]. ACS Catal, 2018, 8(5): 4278-4287.
                 photocatalytic hydrogen evolution activity of NH 2-UiO-66 by   [59]  GE J H, LIU Y J, JIANG D C, et al. Integrating non-precious-metal
                 constructing heterojunction and encapsulating carbon nanodots[J].   cocatalyst Ni 3N with  g-C 3N 4  for enhanced photocatalytic H 2
                 ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11563-11569.   production in water under visible-light irradiation[J]. Chinese Journal
            [41]  GU Z G, LI D J,  ZHENG C,  et al. MOF-templated synthesis of   of Catalysis, 2019, 40(2): 160-167.
                 ultrasmall photoluminescent carbon-nanodot arrays for optical   [60]  LUO J J, ZHAO D, YANG M H, et al. Porous Ni 3N nanosheet array
                 applications[J]. Angew Chem Int Ed Engl, 2017, 56(24): 6853-6858.   as a catalyst for nonenzymatic amperometric determination of
            [42]  QIN J Y,  HUO J P, ZHANG P Y,  et al. Improving  photocatalytic   glucose[J]. Mikrochim Acta, 2018, 185(4): 229.
                 hydrogen production of Ag/g-C 3N 4 nanocomposites by dye-sensitization   [61]  SUN Z C, ZHU M S, FUJITSUKA M, et al. Phase effect of Ni xP y
                 under visible light irradiation[J]. Nanoscale, 2015, 8(4): 2249-2259.   hybridized with  g-C 3N 4 for  photocatalytic hydrogen generation[J].
            [43]  BING W, CHEN Z W, SUN H J, et al. Visible-light-driven enhanced   ACS Appl Mater Interfaces, 2017, 9(36): 30583-30590.
                 antibacterial and biofilm elimination  activity of graphitic carbon   [62]  JIANG P, LIU Q, SUN X P. NiP 2  nanosheet arrays supported on
                 nitride by embedded Ag nanoparticles[J]. Nano Research, 2015, 8(5):   carbon cloth: An efficient 3D hydrogen evolution cathode in both
                 1648-1658.                                        acidic and alkaline solutions[J]. Nanoscale, 2014, 6(22): 13440-13445.
            [44]  ZHU Y Q, WANG T, XU T, et al. Size effect of Pt co-catalyst on   [63]  ZENG D, ZHOU  T, ONG W J, et al. Sub-5  nm ultra-fine FeP
                 photocatalytic efficiency of g-C 3N 4 for hydrogen evolution[J].   nanodots as efficient co-catalysts modified porous g-C 3N 4 for
                 Applied Surface Science, 2019, 464: 36-42.        precious-metal-free photocatalytic hydrogen evolution under visible
            [45]  HAN X, XU D Y, AN L, et al. Ni-Mo nanoparticles as co-catalyst for   light[J]. ACS Appl Mater Interfaces, 2019, 11(6): 5651-5660.
                 drastically enhanced photocatalytic hydrogen production activity over   [64]  XIA Y,  LI Q, LV  K L,  et al. Superiority of graphene over carbon
                 g-C 3N 4[J]. Applied Catalysis B: Environmental, 2019, 243: 136-144.   analogs  for enhanced photocatalytic H 2-production activity of
            [46]  CAO S W, HUANG Q, ZHU B C, et al. Trace-level phosphorus and   ZnIn 2S 4[J]. Applied Catalysis B: Environmental, 2017, 206: 344-352.
                 sodium co-doping of  g-C 3N 4 for  enhanced photocatalytic H 2   [65]  AN X Q, LI K, TANG J. Cu 2O/reduced graphene oxide composites
                 production[J]. Journal of Power Sources, 2017, 351: 151-159.   for the photocatalytic conversion of CO 2[J]. ChemSusChem, 2014,
            [47]  ZHENG Y, LIU J, LIANG J, et al. Graphitic carbon nitride materials:   7(4): 1086-1093.
                 Controllable synthesis and applications in fuel cells and   [66]  XU Q  L, ZHU  B C, JIANG C J, et al. Constructing 2D/2D
                 photocatalysis[J]. Energy & Environmental Science, 2012, 5(5):   Fe 2O 3/g-C 3N 4 direct  Z-scheme photocatalysts with enhanced H 2
                 36-42.                                            generation performance[J]. Solar RRL, 2018, 2(3): 1800006.
            [48]  CAO S  W, YUAN  Y P, FANG J,  et al. In-situ  growth of CdS   [67]  SHE X J, WU J J, XU H, et al. High efficiency photocatalytic water
                 quantum dots on g-C 3N 4 nanosheets for highly efficient photocatalytic   splitting using 2D α-Fe 2O 3/g-C 3N 4 Z-scheme catalysts[J]. Advanced
                 hydrogen generation under visible light irradiation[J]. International   Energy Materials, 2017, 7(17): 1700025.
                 Journal of Hydrogen Energy, 2013, 38(3): 1258-1266.   [68]  XU K, XU H, FENG G W, et al. Photocatalytic hydrogen evolution
            [49]  ZHANG J Y, WANG  Y H, JIN J, et  al. Efficient visible-light   performance of NiS cocatalyst modified LaFeO 3/g-C 3N 4 heterojunctions[J].
                 photocatalytic hydrogen evolution and enhanced photostability of   New Journal of Chemistry, 2017, 41(23): 14602-14609.
                 core/shell CdS/g-C 3N 4 nanowires[J].  ACS Appl Mater  Interfaces,   [69]  YU H,  XU J,  YIN C J, et al.  Significant improvement of
                 2013, 5(20): 10317-10324.                         photocatalytic hydrogen evolution rate over g-C 3N 4 with loading
            [50]  FU J, CHANG B B, TIAN Y L, et al. Novel C 3N 4-CdS composite   CeO 2@Ni 4S 3[J]. Journal of Solid State Chemistry, 2019, 272: 102-112.
                 photocatalysts with organic-inorganic heterojunctions:  In situ   [70]  RAJAMANICKAM D, DHATSHANAMURTHI P, SHANTHI M.
                 synthesis, exceptional activity, high stability and photocatalytic   Enhanced photocatalytic efficiency of NiS/TiO 2 composite catalysts
                 mechanism[J]. Journal of Materials Chemistry A, 2013, 1(9):   using  sunset yellow, an azo dye under day light illumination[J].
                 3083-3090.                                        Materials Research Bulletin, 2015, 61: 439-447.
            [51]  PAN J Q,  DONG  Z J,  WANG B B,  et al. The enhancement  of   [71]  LI W, MA Q, WANG X, et al. Hydrogen evolution  by  catalyzing
                                             3+
                 photocatalytic hydrogen production  via Ti  self-doping black   water splitting on two-dimensional g-C 3N 4-Ag/AgBr heterostructure[J].
                 TiO 2/g-C 3N 4 hollow core-shell nano-heterojunction[J]. Applied   Applied Surface Science, 2019, 494: 275-284.
                 Catalysis B: Environmental, 2019, 242: 92-99.   [72]  LI W, HE S  A,  XU W, et  al. Synthesis of recyclable  magnetic
            [52]  LU Y, YIN W J, PENG K L, et al. Self-hydrogenated shell promoting   mesoporous RH-FSBA photoelectrocatalyst with double cavity
                 photocatalytic H 2 evolution on anatase TiO 2[J]. Nature Communications,   structure[J]. Electrochimica Acta, 2018, 284: 647-654.
                 2018, 9(1): 2752.                             [73]  GE L, HAN C C. Synthesis of MWNTs/g-C 3N 4 composite photocatalysts
            [53]  WANG  J, WANG G  H, WANG X, et  al. 3D/2D direct  Z-scheme   with efficient visible light photocatalytic hydrogen evolution activity[J].
                 heterojunctions of hierarchical TiO 2 microflowers/g-C 3N 4 nanosheets   Applied Catalysis B: Environmental, 2012, 117/118: 268-274.
                 with enhanced charge carrier separation for photocatalytic H 2   [74]  WANG R, GU L N, ZHOU J J, et al. Quasi-polymeric metal-organic
                 evolution[J]. Carbon, 2019, 149: 618-626.         framework UiO-66/g-C 3N 4  heterojunctions for enhanced  photocatalytic
            [54]  LI Y H,  LYU K L, HO W K, et  al. Hybridization of rutile TiO 2   hydrogen evolution under visible light irradiation[J].  Advanced
                 (rTiO 2) with g-C 3N 4 quantum dots (CN QDs): An efficient   Materials Interfaces, 2015, 2(10): 1500037-1500042.
                 visible-light- driven  Z-scheme hybridized photocatalyst[J]. Applied   [75]  LIU Y N, SHEN C C, JIANG N, et al. g-C 3N 4 Hydrogen-bonding
                 Catalysis B: Environmental, 2017, 202: 611-619.   viologen for  significantly enhanced visible-light photocatalytic H 2
            [55]  YU Y M, GENG J F, LI H, et al. Exceedingly high photocatalytic   evolution[J]. ACS Catalysis, 2017, 7(12): 8228-8234.
                 activity of g-C 3N 4/Gd-N-TiO 2 composite with nanoscale heterojunctions[J].   [76]  VISAI L, DE NARDO L, PUNTA C, et al. Titanium oxide
                 Solar Energy Materials and Solar Cells, 2017, 168: 91-99.   antibacterial surfaces in biomedical devices[J]. Int J Artif Organs,
            [56]  YU Y M, LI H, PIAO L J, et al. Synthesis of Gd-N codoped porous   2011, 34(9): 929-946.
                 TiO 2 photocatalyst and its enhanced photocatalytic activities[J].   [77]  CAO S  W, YUAN  Y P, FANG J, et  al.  In-situ  growth of CdS
                 Chemical Research in Chinese Universities, 2016, 32(6): 1038-1044.   quantum dots on g-C 3N 4 nanosheets for highly efficient
            [57]  XIAO L M, LIU T F, ZHANG M, et al. Interfacial construction of   photocatalytic hydrogen generation under visible light irradiation[J].
                 0D/1D g-C 3N 4 nanoparticles/TiO 2 nanotube arrays  with  Z-scheme   International Journal of Hydrogen Energy, 2013, 38(3): 1258-1266.
                 heterostructure for improved photoelectrochemical water splitting[J].   [78]  KAWAUCHI T,  OGUCHI Y, NAGAI K, et al. Conical gradient
                 ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2489-2491.   junctions of dendritic viologen arrays on electrodes[J]. Sci Rep,
            [58]  YANG Y, KAO L C, LIU Y, et al. Cobalt-doped black TiO 2 nanotube   2015, (5): 11122.
   56   57   58   59   60   61   62   63   64   65   66