Page 79 - 《精细化工》2021年第11期
P. 79

第 11 期                         黄剑辉,等:  非平面芳烃的碳氢活化研究进展                                   ·2225·


            羧基,发生 C—H 键活化反应生成新颖的富勒烯菲                           [2]   HASSAN Z, SPULING E,  KNOLL D M, et al. Regioselective
            类衍生物Ⅴg,产率 19%~46%。                                     functionalization of [2.2]paracyclophanes: Recent synthetic progress
                                                                   and perspectives[J]. Angewandte Chemie International Edition, 2020,

                                                                   59(6): 2156-2170.
                                                               [3]   SUN C L, LI H, YU D G, et al. An efficient organocatalytic method
                                                                   for constructing biaryls through aromatic C—H activation[J]. Nature
                                                                   Chemistry, 2010, 2(12): 1044-1049.
                                                               [4]   KUHL N, HOPKINSON M N, WENCEL-DELORD J, et al. Beyond
                                                                   directing groups: Transition-metal-catalyzed C—H activation  of
                                                                   simple arenes[J]. Angewandte Chemie International Edition, 2012,
                                                                   51(41): 10236-10254.
                                                               [5]   SONG G, WANG F, LI X. C—C, C—O and C—N bond formation
                                                                   via  rhodium(Ⅲ)-catalyzed oxidative C—H activation[J].  Chemical

                                                                   Society Reviews, 2012, 41(9): 3651-3678.
                 通过 C—H 键活化策略,富勒烯 C 60 还可与芳基                   [6]   WANG P, VERMA P, XIA G, et al. Ligand-accelerated non-directed
                                                                   C — H functionalization of arenes[J]. Nature, 2017, 551(7681):
            磺酸、2-苯乙基/苄醇、仲烷基芳基酮、苯酚、芳酰                               489-493.
            基化合物、4-羟基香豆素、肟等化合物反应                    [69-75] ,  [7]   BROWN C J, FARTHING  A C.  Preparation and structure of
                                                                   di-p-xylylene[J]. Nature, 1949, 164(4178): 915-916.
            得到一系列富勒烯 C 60 稠合的中等(五元环~七元环)
                                                               [8]   CRAM D J, STEINBERG H. Macro rings.  ⅠPreparation and
            芳杂环衍生物,极大丰富了富勒烯衍生物的种类。                                 spectra of the paracyclophanes[J]. Journal of the American Chemical
            随着人们对其不断研究,C 60 及其衍生物在电化学、                             Society, 1951, 73(12): 5691-5704.
                                                               [9]   PYE P J, ROSSEN K, REAMER R A, et al. [2.2]Phanephos-ruthenium(Ⅱ)
            生物医药科学、材料等领域展现出广阔的应用前景。
                                                                   complexes: Highly active asymmetric catalysts for the hydrogenation
                                                                   of β-ketoesters[J]. Tetrahedron Letters, 1998, 39(25): 4441-4444.
            4    总结与展望                                         [10] DOMINGUEZ B, ZANOTTI-GEROSA A, HEMS W. Electrophilic
                                                                   substitution of dibromoparacyclophane:  A route to novel paracyclophane
                 本文总结了典型的非平面芳烃——环仿、螺烯、                             phosphine ligands[J]. Organic Letters, 2004, 6(12): 1927-1930.
                                                               [11]  CRAM D J,  ALLINGER N L. Macro rings.  Ⅻ Stereochemical
            碗烯、花烯以及富勒烯 C 60 的 C—H 活化反应。C—                          consequences of steric compression in the smallest paracyclophane1[J].
            H 键的反应选择性和反应活性是相关研究的关键,                                Journal of the American Chemical Society, 1955, 77(23): 6289-6294.
            导向基团的存在、配体的选择以及过渡金属催化剂                             [12]  BANFI S, MANFREDI  A, MONTANARI F, et al. Synthesis of
                                                                   chiral Mn(Ⅲ)-meso-tetrakis-[2.2]-p-cyclophanyl-porphyrin: A  new
            的使用对 C—H 键的活化都有着极其重要的作用。                               catalyst for enantioselective epoxidation[J]. Journal of Molecular
                 非平面芳烃具有独特的物理、化学性质,在医                              Catalysis A: Chemical, 1996, 113(1): 77-86.
                                                               [13]  BARTHOLOMEW G P, BAZAN G  C. Synthesis, characterization,
            药、电化学、催化、新型材料中已展现出广阔的应
                                                                   and spectroscopy of 4,7,12,15-[2.2]paracyclophane containing donor
            用前景。C—H 活化策略的应用可以加快非平面芳烃                               and acceptor  groups:  Impact of  substitution patterns on  through-space
            的多样化衍生,使快速构建结构复杂、功能多样的非                                charge transfer[J]. Journal of the American Chemical Society, 2002,
                                                                   124(18): 5183-5196.
            平面芳烃成为可能。然而,非平面芳烃的 C—H 活
                                                               [14]  HASEGAWA M, KOBAYAKAWA K,  NOJIMA Y,  et al. Synthesis
            化仍面临着许多挑战:非平面芳烃由于合成路线长、                                and chiroptical properties of stereogenic cyclic dimers  based on
            总产率不高等不足,使其暂时不能大规模应用于工                                 2,2′-biselenophene and [2.2]paracyclophane[J]. Organic & Biomolecular
                                                                   Chemistry, 2019, 17(39): 8822-8826.
            业化生产;已有的非平面芳烃的结构类型和数量还                             [15]  LENNARTZ  P, RAABE  G, BOLM C.  Palladium-catalyzed C—H
            较少,远远不能满足人们进行应用研究的需要;反应                                bond  acetoxylation:  An  approach  to  ortho-substituted
                                                                   hydroxy[2.2]paracyclophane derivatives[J]. Advanced Synthesis &
            的区域选择性、位置及导向基团特异性仍需探索。
                                                                   Catalysis, 2012, 354(17): 3237-3249.
                 因此,发展更加高效、可循环利用的催化体系                          [16]  STOWERS K J, SANFORD M S. Mechanistic comparison between
            是 C—H 键活化的重要任务。目前非平面芳烃的研                               Pd-catalyzed ligand-directed C—H chlorination and C—H acetoxylation[J].
                                                                   Organic Letters, 2009, 11(20): 4584-4587.
            究取得了一定的成果,但仍有许多 C—H 活化策略
                                                               [17]  KRAMER J J P,  YILDIZ C,  NIEGER M, et al. Direct access to
            未被研究。相信未来定能优化非平面芳烃的合成路                                 4,5-disubstituted [2.2]paracyclophanes by selective ortho-halogenation
            线,寻找高效、环境友好的催化体系,降低现有催                                 with Pd-catalyzed C—H activation[J]. European Journal of Organic
                                                                   Chemistry, 2014, (6): 1287-1295.
            化剂的合成成本,从而使 C—H 活化策略能真正运                           [18]  SCHAAL P, BAARS H, RAABE G, et al. Phenyliodine diacetate-
            用到工业化生产中,获得更多优秀的非平面芳烃,                                 mediatedpara-functionalizations of amido- and amino-substituted
            为非平面芳烃应用到实际生活中提供可能。                                    [2.2]paracyclophanes[J]. Advanced Synthesis & Catalysis, 2013,
                                                                   355(13): 2506-2512.
                                                               [19]  ZIPPEL C, SPULING E, HASSAN Z, et al. Controlling regioselectivity
            参考文献:
                                                                   in palladium-catalyzed C — H activation/aryl-aryl coupling of
            [1]   NESTOROS E, STUPARU M C. Corannulene: A molecular bowl of   4-phenylamino[2.2]paracyclophane[J]. Chemistry-A European Journal,
                 carbon with multifaceted properties  and diverse applications[J].   2020, 26(61): 13771-13775.
                 Chemical Communications, 2018, 54(50): 6503-6519.   [20]  LENNARTZ P,  RAABE G, BOLM  C. Synthesis of planar chiral
   74   75   76   77   78   79   80   81   82   83   84