Page 135 - 《精细化工》2021年第12期
P. 135

第 12 期                    李   辉,等:  低黏度自交联氟氢乙烯基硅油的合成及应用                                 ·2497·


                 review”[J]. Progress in Organic Coatings, 2018, 125: 287-315.   化学品), 2006, (18): 21-24.
            [6]   JIANG J  T, SHEN Y F, YU D Y,  et al. Sustainable washing-free   [15]  LIU J (刘佳), SHAO Q (邵倩), YANG X  F  (杨雄发),  et al.
                 printing of disperse dyes on polyester fabrics enabled by crosslinked   Preparation of methyl hydrogen  silicone fluids  via ring-opening
                 fluorosilicone modified  polyacrylate binders[J]. Polymers for   copolymerization of D 4 with D 4H catalyzed with rare earth solid
                 Advanced Technologies, 2021, 32(2):641-650.       superacid[J]. Polymer Materials Science And Engineering (高分子材
            [7]   BHUVANESWARI C M, DHANASEKARAN R, CHAKRAVARTHY   料科学与工程), 2015, 31(4): 11-16.
                 SKR, et al. Evaluation of fluorosilicone-silicone elastomer blend for   [16]  LI B, CHEN S J, ZHANG J. Improvement in oil resistance of room
                 aeronautical fuel system[J]. Progress in Rubber Plastics and Recycling   temperature-vulcanized polysiloxane rubber  via blending with
                 Technology, 2015, 31(3): 207-217.                 self-synthetic fluorosilicone[J]. Journal of Elastomers and Plastics,
            [8]   ZHANG D Q (张德琪), TARIQ A,FAN H (范宏). Progress and   2014, 46(8): 695-709.
                 trend  in  synthesis and application of fluorine contained silicone   [17]  YANG Y (阳龑), TAN C B (谭徜彬), ZHANG Y W (章友维), et al.
                 oil[J]. Fine Chemicals (精细化工), 2016, 33(8): 841-849.   Research progress of vinyl fluorosilicone[J]. China Adhesives (中国
            [9]   ZHANG G D (张国栋), WU J R (邬继荣),HU Y Q (胡应乾), et al.   胶粘剂), 2017, 26(10): 39-43.
                 Research progress on the synthesis of poly [methyl (trifluoropropyl)   [18]  LIU Y T, LIU H Z, ZHANG R, et al. Preparation and properties of
                 siloxane][J]. Materials Reports (材料导报), 2015, 29(5): 73-77.   heat curable blended methylfluorosilicone rubber[J]. Polymer
            [10]  XIA S (夏爽), LIU X B (刘小兵), ZHAO N (赵娜), et al. Progress in   Engineering and Science, 2013, 53(1): 52-58.
                 anionic ring-opening homo/co-polymerization of cyclosiloxanes[J].   [19]  ZHAO S, FENG  S. Hydrogen-containing silicone resin as the
                 Acta Polymerica Sinica (高分子学报), 2018, (12): 1482-1492.   crosslinking agent of heat-curable silicone rubber[J]. Journal of
            [11]  YANG M H, LIN H T, LIN C C. Synthesis and characterization of   Applied Polymer Science, 2003, 88(14): 3066-3069.
                 phenyl modified PDMS/PHMS copolymers[J]. Journal of The Chinese   [20]  LI B, CHEN S J, ZHANG J. Improvement in oil resistance of room
                 Chemical Society, 2003, 50(1): 51-57.             temperature-vulcanized polysiloxane rubber  via blending with self-
            [12]  PIERCE O R, KIM Y K. Fluorosilicones as high temperature   synthetic fluorosilicone[J]. Journal of Elastomers and Plastics, 2014,
                 elastomers[J]. The Journal of Elastroplastics, 1971, 3(2): 82-96.   46(8): 695-709.
            [13]  CAI T Y (蔡天瑜), DENG J G (邓建国), ZHOU Y L (周元林), et al.   [21] WANG  Y  (王宇),  BAI Y P (白永平). The invention discloses a
                 Preparation of high molecular weight vinyl terminated fluorine-   fluorosilicate release agent and a  preparation method thereof:
                 containing polysiloxanes  via ring-opening copolymerization  of D 4   CN107619479B[P]. 2018-01-23.
                 with D 3F catalyzed by NKC-9[J]. Journal of Functional Materials (功  [22]  CHEN X  B (陈晓冰). Ambient-curable polysiloxane coatings:
                 能材料), 2019, 50(7): 7205-7209.                     Preparation, structure and properties[D]. Shanghai: Fudan University
            [14]  ZHAO J H (赵建宏), ZHAO M X (赵明星), WANG L C (王留成),   (复旦大学), 2012.
                 et al. Synthesis of polydimethylsiloxane with solid super acid   [23]  FANG X (方欣). Synthesis of Si—C type polyurethane foam
                      2–
                 TiO 2/SO 4  as catalyst[J]. Fine and Specialty Chemicals (精细与专用  leveling agent[D]. Hangzhou: Zhejiang University (浙江大学), 2004.

            (上接第 2421 页)                                           Journal of Industrial and Engineering Chemistry, 2020, 88: 268-277.
            [53]  JIANG L M (姜黎明). Preparation of mesoporous TiO 2 powder with   [60]  LU Z, SUN K H,  WANG J,  et al. A  highly  active Au/In 2O 3-ZrO 2
                 high specific surface  area by hydrothermal  method and its   catalyst for selective hydrogenation of CO 2 to methanol[J]. Catalysts,
                 photocatalytic performance[J]. Chemistry and Bonding  (化学与粘  2020, 10(11): 1360-1370.
                 合), 2011, 33(3): 27-29,52.                    [61]  WANG  W  W, QU Z P, SONG  L X,  et al.  Probing into the
            [54]  LIU B J (刘百军), HONG W (洪伟), WANG T T (王童童), et al.   multifunctional role of copper species and reaction pathway on
                 Hydrothermal preparation and characterization of mesoporous   copper-cerium-zirconium catalysts for CO 2 hydrogenation to
                 TiO 2[C]//The 7th National Conference on Environmental Catalysis   methanol using high pressure  in situ DRIFTS[J]. Journal of
                 and Environmental Materials (第七届全国环境催化与环境材料学      Catalysis, 2020, 382: 129-140.
                 术会议) , 2011: 271-271.                         [62]  WANG W W,  QU Z  P,  SONG L  X,  et al. Effect of the  nature of
            [55]  WANG J J, TANG C Z, LI G N, et al. High-performance MaZrO x   copper species on methanol synthesis from CO 2 hydrogenation
                 (Ma = Cd, Ga) solid-solution catalysts for CO 2 hydrogenation to   reaction over CuO/Ce 0.4Zr 0.6O 2 catalyst[J]. Molecular Catalysis,
                 methanol[J]. ACS Catalysis, 2019, 9: 10253-10259.     2020, 493: 111105.
            [56]  YIN K J, SHEN Y L. Theoretical insights into CO 2 hydrogenation to   [63]  GAIKWAD R, BANSODE A,  URAKAWA  A. High-pressure
                 HCOOH over Fe xZr 1–xO 2 solid solution catalyst[J]. Applied Surface   advantages in  stoichiometric hydrogenation of carbon  dioxide to
                 Science, 2020, 528: 146926.                       methanol[J]. Journal of Catalysis, 2016, 343: 127-132.
            [57]  TSOUKALOU A, ABDALA P M, ARMUTLULU A, et al. Operando   [64]  GOEPPERT A, CZAUN M, JONES J P, et al. Recycling of carbon
                 X-ray absorption spectroscopy identifies a monoclinic ZrO 2: In solid   dioxide to methanol and derived products-closing the loop[J].
                 solution as the active phase for  the hydrogenation  of CO 2 to   Chemical Society Reviews, 2014, 43(23): 7995-8048.
                 methanol[J]. ACS Catalysis, 2020, 10(17): 10060-10067.     [65]  HAN F, LIU H P, CHENG W Q, et al. Highly selective conversion of
            [58]  YANG B, DENG  W, GUO  L M,  et al. Copper-ceria solid solution   CO 2 to methanol on the CuZnO-ZrO 2 solid solution with the
                 with improved catalytic activity for hydrogenation of CO 2 to   assistance of plasma[J]. RSC Advances, 2020, 10(56): 33620-33627.
                 CH 3OH[J]. Chinese Journal of Catalysis, 2020, 41(9): 1348-1359.     [66]  WANG X X, WANG Y Z, YANG C L, et al. A novel microreaction
            [59]  FANG X, XI  Y T, JIA H,  et al. Tetragonal zirconia based ternary   strategy to fabricate superior hybrid zirconium and zinc  oxides for
                 ZnO-ZrO 2-MO x solid solution catalysts for highly selective   methanol synthesis from CO 2[J]. Applied Catalysis A: General, 2020,
                 conversion of CO 2 to methanol at high  reaction temperature[J].   595: 117507.
   130   131   132   133   134   135   136   137   138   139   140