Page 30 - 《精细化工》2021年第12期
P. 30

·2392·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 valerolactone: A biomass-derived acrylic  monomer[J]. Applied   biomass-derived furfural and levulinic acid[J]. RSC Advances, 2013,
                 Catalysis A: General, 2004, 272(1/2): 249-256.     3(12): 3853-3856.
            [28]  PRIMO A, CONCEPCION P, CORMA A. Synergy between the   [46]  YAN K, YANG Y Y, CHAI J J, et al. Catalytic reactions of gamma-
                 metal nanoparticles and the support for  the hydrogenation of   valerolactone: A platform to fuels and value-added chemicals[J].
                 functionalized carboxylic acids to  diols on Ru/TiO 2[J]. Chemical   Applied Catalysis B Environmental, 2015, 179: 292-304.
                 Communications, 2011, 47(12): 3613-3615.      [47]  HENGST K, LGTHART  D A J M, DORONKIN D  E,  et al.
            [29]  TAN J J, CUI J L, DENG T S, et al. Water-promoted hydrogenation   Continuous synthesis of γ-valerolactone in a trickle-bed reactor over
                 of levulinic acid to γ-valerolactone on supported ruthenium catalyst   supported nickel catalysts[J]. Industrial Engineering  Chemistry
                 [J]. ChemCatChem, 2014, 7(3): 508-512.            Research, 2017, 56(10): 2680-2689.
            [30]  ORTIZ-CERVANTES C, GARCIA J J. Hydrogenation of levulinic   [48]  FU J, DONG S, LU X Y. Hydrogenation of levulinic acid over nickel
                 acid to γ-valerolactone using ruthenium nanoparticles[J]. Inorganica   catalysts supported on aluminum oxide to prepare γ-valerolactone[J].
                 Chimica Acta, 2013, 397: 124-128.                 Catalysts, 2015, 6(1): 6-15.
            [31]  GALLETTI A M R, ANTONTTI C, LUISE V D, et al. A sustainable   [49]  SOSA L F, DA SILVA V T, DE SOUZA P M. Hydrogenation  of
                 process for  the production of  γ-valerolactone by hydrogenation of   levulinic acid to  γ-valerolactone using carbon nanotubes  supported
                 biomass-derived levulinic acid[J]. Green  Chemistry, 2012, 14(3):   nickel catalysts[J]. Catalysis Today, 2020, 381: 86-95.
                 688-694.                                      [50]  GUNDEKARI S, SRINIVASAN K. In situ generated Ni(0)@boehmite
            [32]  SUDHAKAR M, LAKSHMI K  M, SWARNA J V,  et al.    from NiAl-LDH: An efficient catalyst for selective hydrogenation of
                 Hydroxyapatite as a novel support for Ru in the hydrogenation of   biomass derived  levulinic acid to  γ-valerolactone[J]. Catalysis
                 levulinic acid to γ-valerolactone[J]. Catalysis Communications, 2014,   Communications, 2017, 102: 40-43.
                 50: 101-104.                                  [51]  SHAO S, YANG Y, GUO S W, et al. Highly active and stable Co
            [33]  TAN J J, CUI J L, DING G Q, et al. Efficient aqueous hydrogenation   nanoparticles embedded in nitrogen-doped mesoporous carbon
                 of levulinic acid to  γ-valerolactone over highly active and stable   nanofibers for aqueous-phase levulinic acid hydrogenation[J]. Green
                 ruthenium catalyst[J]. Catalysis Science and Technology, 2015, 6(5):   Energy & Environment, 2021, 6(4): 567-577.
                 1469-1475.                                    [52]  ZHONG H, LI Q J, LIU J K, et al. New method for highly efficient
            [34]  BAI X F, REN T, MAO J B,  et al. A Ag-ZrO 2-graphene oxide   conversion of  biomass-derived levulinic acid to  γ-valerolactone in
                 nanocomposite as a metal-leaching-resistant catalyst for the aqueous-   water without precious metal catalysts[J]. ACS Sustainable Chemistry
                 phase hydrogenation of levulinic acid into gamma-valerolactone[J].   and Engineering, 2017, 5(8): 6517-6523.
                 New Journal of Chemistry, 2020, 44(38): 16526-16536.     [53]  QI L, HORVATH I T. Catalytic  conversion of fructose to
            [35]  LUO  W H, DEKA U, BEALE  A  M,  et al. Ruthenium-catalyzed   γ-valerolactone in  γ-valerolactone[J].  ACS Catalysis, 2012, 2(11):
                 hydrogenation of levulinic acid: Influence of the support and solvent   2247-2249.
                 on catalyst selectivity and stability[J]. Journal  of Catalysis, 2013,   [54]  WETTSTEIN S G, ALONSO D M, CHONG Y, et al. Production of
                 301(5): 175-186.                                  levulinic acid and gamma-valerolactone (GVL) from cellulose using
            [36]  LI F K, LIAM J F, CAI Z P, et al. Catalytic transfer hydrogenation of   GVL as a solvent in biphasic systems[J]. Energy  Environmental
                 butyl levulinate to  γ-valerolactone over zirconium phosphates with   Science, 2012, 5: 8199-8203.
                 adjustable Lewis and Brønsted acid sites[J]. Applied Catalysis B   [55]  HENGST K, SCHUBERT M, CARVALHO H W P, et al. Synthesis
                 Environmental, 2017, 214: 67-77.                  of γ-valerolactone by hydrogenation of levulinic acid over supported
            [37]  KUWAHARE Y, KABURAGI W, OSADA Y, et al. Catalytic transfer   nickel catalysts[J]. Applied Catalysis: A General, 2015, 502: 18-26.
                 hydrogenation  of  biomass-derived levulinic acid and its esters to   [56]  GEILEN F M A, ENGENDAHL B, HARWARDT A, et al. Selective
                 γ-valerolactone over ZrO 2 catalyst supported on SBA-15 silica[J].   and flexible transformation of biomass-derived platform chemicals
                 Catalysis Today, 2017, 281: 418-428.              by a multifunctional catalytic system[J]. Angewandte Chemie, 2010,
            [38]  Al-NAJI M, POPOVA M, CHEN Z, et al. Aqueous-phase hydrogenation   49(32): 5510-5514.
                 of levulinic acid using formic acid as  a sustainable reducing agent   [57]  AL-SHAAL M G, WRIGHT W R H, PALKOVITS R. Exploring the
                 over Pt catalysts supported on mesoporous zirconia[J]. ACS   ruthenium catalysed synthesis  of  γ-valerolactone in alcohols and
                 Sustainable Chemistry & Engineering, 2019, 8(1): 393-402.     utilisation of mild solvent-free reaction conditions[J]. Green Chemistry,
            [39]  XIAO C X, GOH T W, QI Z Y, et al. Conversion of levulinic acid to   2012, 14(4): 1260-1263.
                 γ-valerolactone over few-layer graphene-supported ruthenium   [58]  YANG Y, GAO G, ZHANG X, et al. Facile fabrication of composition-
                 catalysts[J]. ACS Catalysis, 2016, 6(2): 593-599.     tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic
            [40]  DU X L, LIU Y  M, WANG J Q,  et al. Catalytic conversion of   acid hydrogenation[J]. ACS Catalysis, 2014, 4(5): 1419-1425.
                 biomass-derived levulinic acid into  γ-valerolactone using iridium   [59]  LIU H,  CAO  X J, TANG X,  et al. Choline chloride-promoted
                 nanoparticles supported on carbon nanotubes[J]. Chinese Journal of   efficient solvent-free hydrogenation  of biomass-derived levulinic
                 Catalysis, 2013, 34(5): 993-1001.                 acid to γ-valerolactone over Ru/C[J]. Green Chemistry, 2021, 23(5):
            [41]  HENGNE  A M, RODE  C V. Cu-ZrO 2 nanocomposite catalyst for   1983-1988.
                 selective hydrogenation of levulinic acid and its ester to   [60]  CHRISTIAN R V, BROWN  H  D,  HIXON R M. Derivatives  of  γ-
                 γ-valerolactone[J]. Green Chemistry, 2012, 14(4): 1064-1072.     valerolactone, 1,4-pentanediol and 1,4-di-(β-cyanoethoxy)-pentane1[J].
            [42]  XU Q, LI X L, PAN T, et al. Supported copper catalysts for highly   Journal of the American Chemical Society, 1947, 69(8): 1961-1963.
                 efficient hydrogenation of biomass-derived levulinic acid and   [61]  SHIMIZU K I, KANNO S, KON K. Hydrogenation of levulinic acid
                 γ-valerolactone[J]. Green Chemistry, 2016, 18(5): 1287-1294.     to  γ-valerolactone by Ni  and  MoO x co-loaded carbon catalysts[J].
            [43]  YAN K, CHEN A C. Efficient hydrogenation of biomass-derived   Green Chemistry, 2014, 16(8): 3899-3903.
                 furfural and levulinic acid on the facilely synthesized noble-metal-   [62]  HENGST K,  SCHUBERT M, CARVALHO  H,  et al. Synthesis of
                 free Cu-Cr catalyst[J]. Energy, 2013, 58: 357-363.     γ-valerolactone by  hydrogenation of levulinic acid over  supported
            [44]  YAN K, CHEN  A C. Selective hydrogenation of furfural and   nickel catalysts[J]. Applied Catalysis A: General, 2015, 502: 18-26.
                 levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst[J]. Fuel,   [63]  GEBRESILLASE M N, RAGUINDIN R Q, KIM H, et al. Supported
                 2014, 115: 101-108.                               bimetallic catalysts for the solvent-free hydrogenation  of levulinic
            [45]  YAN  K,  LIAO J Y, WU  X,  et al. A  noble-metal free  Cu-catalyst   acid to γ-valerolactone: Effect of metal combination (Ni-Cu, Ni-Co,
                 derived from hydrotalcite for highly efficient hydrogenation of   Cu-Co)[J]. Catalysts, 2020, 10(11): 1354-1373.
   25   26   27   28   29   30   31   32   33   34   35