Page 30 - 《精细化工》2021年第12期
P. 30
·2392· 精细化工 FINE CHEMICALS 第 38 卷
valerolactone: A biomass-derived acrylic monomer[J]. Applied biomass-derived furfural and levulinic acid[J]. RSC Advances, 2013,
Catalysis A: General, 2004, 272(1/2): 249-256. 3(12): 3853-3856.
[28] PRIMO A, CONCEPCION P, CORMA A. Synergy between the [46] YAN K, YANG Y Y, CHAI J J, et al. Catalytic reactions of gamma-
metal nanoparticles and the support for the hydrogenation of valerolactone: A platform to fuels and value-added chemicals[J].
functionalized carboxylic acids to diols on Ru/TiO 2[J]. Chemical Applied Catalysis B Environmental, 2015, 179: 292-304.
Communications, 2011, 47(12): 3613-3615. [47] HENGST K, LGTHART D A J M, DORONKIN D E, et al.
[29] TAN J J, CUI J L, DENG T S, et al. Water-promoted hydrogenation Continuous synthesis of γ-valerolactone in a trickle-bed reactor over
of levulinic acid to γ-valerolactone on supported ruthenium catalyst supported nickel catalysts[J]. Industrial Engineering Chemistry
[J]. ChemCatChem, 2014, 7(3): 508-512. Research, 2017, 56(10): 2680-2689.
[30] ORTIZ-CERVANTES C, GARCIA J J. Hydrogenation of levulinic [48] FU J, DONG S, LU X Y. Hydrogenation of levulinic acid over nickel
acid to γ-valerolactone using ruthenium nanoparticles[J]. Inorganica catalysts supported on aluminum oxide to prepare γ-valerolactone[J].
Chimica Acta, 2013, 397: 124-128. Catalysts, 2015, 6(1): 6-15.
[31] GALLETTI A M R, ANTONTTI C, LUISE V D, et al. A sustainable [49] SOSA L F, DA SILVA V T, DE SOUZA P M. Hydrogenation of
process for the production of γ-valerolactone by hydrogenation of levulinic acid to γ-valerolactone using carbon nanotubes supported
biomass-derived levulinic acid[J]. Green Chemistry, 2012, 14(3): nickel catalysts[J]. Catalysis Today, 2020, 381: 86-95.
688-694. [50] GUNDEKARI S, SRINIVASAN K. In situ generated Ni(0)@boehmite
[32] SUDHAKAR M, LAKSHMI K M, SWARNA J V, et al. from NiAl-LDH: An efficient catalyst for selective hydrogenation of
Hydroxyapatite as a novel support for Ru in the hydrogenation of biomass derived levulinic acid to γ-valerolactone[J]. Catalysis
levulinic acid to γ-valerolactone[J]. Catalysis Communications, 2014, Communications, 2017, 102: 40-43.
50: 101-104. [51] SHAO S, YANG Y, GUO S W, et al. Highly active and stable Co
[33] TAN J J, CUI J L, DING G Q, et al. Efficient aqueous hydrogenation nanoparticles embedded in nitrogen-doped mesoporous carbon
of levulinic acid to γ-valerolactone over highly active and stable nanofibers for aqueous-phase levulinic acid hydrogenation[J]. Green
ruthenium catalyst[J]. Catalysis Science and Technology, 2015, 6(5): Energy & Environment, 2021, 6(4): 567-577.
1469-1475. [52] ZHONG H, LI Q J, LIU J K, et al. New method for highly efficient
[34] BAI X F, REN T, MAO J B, et al. A Ag-ZrO 2-graphene oxide conversion of biomass-derived levulinic acid to γ-valerolactone in
nanocomposite as a metal-leaching-resistant catalyst for the aqueous- water without precious metal catalysts[J]. ACS Sustainable Chemistry
phase hydrogenation of levulinic acid into gamma-valerolactone[J]. and Engineering, 2017, 5(8): 6517-6523.
New Journal of Chemistry, 2020, 44(38): 16526-16536. [53] QI L, HORVATH I T. Catalytic conversion of fructose to
[35] LUO W H, DEKA U, BEALE A M, et al. Ruthenium-catalyzed γ-valerolactone in γ-valerolactone[J]. ACS Catalysis, 2012, 2(11):
hydrogenation of levulinic acid: Influence of the support and solvent 2247-2249.
on catalyst selectivity and stability[J]. Journal of Catalysis, 2013, [54] WETTSTEIN S G, ALONSO D M, CHONG Y, et al. Production of
301(5): 175-186. levulinic acid and gamma-valerolactone (GVL) from cellulose using
[36] LI F K, LIAM J F, CAI Z P, et al. Catalytic transfer hydrogenation of GVL as a solvent in biphasic systems[J]. Energy Environmental
butyl levulinate to γ-valerolactone over zirconium phosphates with Science, 2012, 5: 8199-8203.
adjustable Lewis and Brønsted acid sites[J]. Applied Catalysis B [55] HENGST K, SCHUBERT M, CARVALHO H W P, et al. Synthesis
Environmental, 2017, 214: 67-77. of γ-valerolactone by hydrogenation of levulinic acid over supported
[37] KUWAHARE Y, KABURAGI W, OSADA Y, et al. Catalytic transfer nickel catalysts[J]. Applied Catalysis: A General, 2015, 502: 18-26.
hydrogenation of biomass-derived levulinic acid and its esters to [56] GEILEN F M A, ENGENDAHL B, HARWARDT A, et al. Selective
γ-valerolactone over ZrO 2 catalyst supported on SBA-15 silica[J]. and flexible transformation of biomass-derived platform chemicals
Catalysis Today, 2017, 281: 418-428. by a multifunctional catalytic system[J]. Angewandte Chemie, 2010,
[38] Al-NAJI M, POPOVA M, CHEN Z, et al. Aqueous-phase hydrogenation 49(32): 5510-5514.
of levulinic acid using formic acid as a sustainable reducing agent [57] AL-SHAAL M G, WRIGHT W R H, PALKOVITS R. Exploring the
over Pt catalysts supported on mesoporous zirconia[J]. ACS ruthenium catalysed synthesis of γ-valerolactone in alcohols and
Sustainable Chemistry & Engineering, 2019, 8(1): 393-402. utilisation of mild solvent-free reaction conditions[J]. Green Chemistry,
[39] XIAO C X, GOH T W, QI Z Y, et al. Conversion of levulinic acid to 2012, 14(4): 1260-1263.
γ-valerolactone over few-layer graphene-supported ruthenium [58] YANG Y, GAO G, ZHANG X, et al. Facile fabrication of composition-
catalysts[J]. ACS Catalysis, 2016, 6(2): 593-599. tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic
[40] DU X L, LIU Y M, WANG J Q, et al. Catalytic conversion of acid hydrogenation[J]. ACS Catalysis, 2014, 4(5): 1419-1425.
biomass-derived levulinic acid into γ-valerolactone using iridium [59] LIU H, CAO X J, TANG X, et al. Choline chloride-promoted
nanoparticles supported on carbon nanotubes[J]. Chinese Journal of efficient solvent-free hydrogenation of biomass-derived levulinic
Catalysis, 2013, 34(5): 993-1001. acid to γ-valerolactone over Ru/C[J]. Green Chemistry, 2021, 23(5):
[41] HENGNE A M, RODE C V. Cu-ZrO 2 nanocomposite catalyst for 1983-1988.
selective hydrogenation of levulinic acid and its ester to [60] CHRISTIAN R V, BROWN H D, HIXON R M. Derivatives of γ-
γ-valerolactone[J]. Green Chemistry, 2012, 14(4): 1064-1072. valerolactone, 1,4-pentanediol and 1,4-di-(β-cyanoethoxy)-pentane1[J].
[42] XU Q, LI X L, PAN T, et al. Supported copper catalysts for highly Journal of the American Chemical Society, 1947, 69(8): 1961-1963.
efficient hydrogenation of biomass-derived levulinic acid and [61] SHIMIZU K I, KANNO S, KON K. Hydrogenation of levulinic acid
γ-valerolactone[J]. Green Chemistry, 2016, 18(5): 1287-1294. to γ-valerolactone by Ni and MoO x co-loaded carbon catalysts[J].
[43] YAN K, CHEN A C. Efficient hydrogenation of biomass-derived Green Chemistry, 2014, 16(8): 3899-3903.
furfural and levulinic acid on the facilely synthesized noble-metal- [62] HENGST K, SCHUBERT M, CARVALHO H, et al. Synthesis of
free Cu-Cr catalyst[J]. Energy, 2013, 58: 357-363. γ-valerolactone by hydrogenation of levulinic acid over supported
[44] YAN K, CHEN A C. Selective hydrogenation of furfural and nickel catalysts[J]. Applied Catalysis A: General, 2015, 502: 18-26.
levulinic acid to biofuels on the ecofriendly Cu-Fe catalyst[J]. Fuel, [63] GEBRESILLASE M N, RAGUINDIN R Q, KIM H, et al. Supported
2014, 115: 101-108. bimetallic catalysts for the solvent-free hydrogenation of levulinic
[45] YAN K, LIAO J Y, WU X, et al. A noble-metal free Cu-catalyst acid to γ-valerolactone: Effect of metal combination (Ni-Cu, Ni-Co,
derived from hydrotalcite for highly efficient hydrogenation of Cu-Co)[J]. Catalysts, 2020, 10(11): 1354-1373.