Page 29 - 《精细化工》2021年第12期
P. 29

第 12 期           唐   兴,等:  水相和无溶剂体系中生物质基乙酰丙酸制备 γ-戊内酯的研究进展                               ·2391·


                (1)对于水相体系中催化 LA 加氢合成 GVL,                      [8]   WINOTO H P, AHN B S, JAE J. Production of γ-valerolactone from
                                                                   furfural by a single-step process using Sn-Al-beta zeolites: Optimizing
            一方面,由于水的极性较强,特别是在较高温度下
                                                                   the catalyst acid properties and  process conditions[J]. Journal of
            容易造成催化剂活性金属的流失,进而导致催化剂                                 Industrial and Engineering Chemistry, 2016, 40: 62-71.
            部分失活。通过创新催化剂合成方式可以提高活性                             [9]  TANG X (唐兴), HU L (胡磊), SUN Y (孙勇), et al. Conversion of
                                                                   biomass  to novel platform  chemical  γ-valerolactone by selective
            金属位点的水热稳定性。例如,设计合成具有核壳                                 reduction  of  levulinic acid[J]. Progress in Chemistry (化学进展),
            结构的催化剂,或增强活性金属与载体相互作用力。                                2013, 25(11): 1906-1914.
                                                               [10]  WEI J N (魏珺楠), TANG X (唐兴), SUN Y (孙勇), et al. Applications
            另一方面,催化剂载体如金属氧化物等在高温水热
                                                                   of  novel biomass-derived platform  molecule  γ-valerolactone[J].
            条件下会发生水解,也会造成催化剂结构破坏,进                                 Progress in Chemistry (化学进展), 2016, 28(11): 1672-1681.
            而导致催化剂部分失活。因此,设计合成具有较高                             [11]  ZHANG Z H. Synthesis of γ-valerolactone from carbohydrates and
                                                                   its applications[J]. ChemSusChem,2016, 9(2):156-171.
            水热稳定性的催化剂载体也是未来研究的重要方向                             [12]  TANG X, ZENG X H, LI Z, et al. Production of γ-valerolactone from
            之一。此外,设计开发在温和反应条件下具有高效                                 lignocellulosic biomass for sustainable fuels and chemicals supply[J].
                                                                   Renewable and Sustainable Energy Reviews, 2014, 40: 608-620.
            催化活性的非贵金属加氢催化剂也是水相 LA 加氢
                                                               [13]  DUTTA S,  YU I K M, TSANG D C  W,  et al. Green synthesis of
            合成 GVL 的重要研究方向之一。                                      gamma-valerolactone (GVL) through hydrogenation  of biomass-
                (2)对于无溶剂体系催化 LA 加氢合成 GVL,                          derived levulinic acid using non-noble  metal catalysts: A  critical
                                                                   review[J]. Chemical Engineering Journal, 2019, 372: 992-1006.
            由于 LA 具有一定的酸性,所以无溶剂体系中催化                           [14]  WANG J T (王京拓), ZHANG M H (张明慧). Catalytic reactions of
            LA 加氢的催化剂需要具有较强的耐酸性。更重要的                               levulinic acid as a biomass-derived platform molecule[J]. Petrochemical
                                                                   Technology (石油化工), 2016, 45(5): 513-520.
            是,LA 分子结构中包含了羰基和羧基两个主要的有                           [15]  ZHU L Y (朱龙云),  YANG W X (杨文霞), LIU  Y X (刘迎新).
            机官能团,在无溶剂条件下二者在催化剂表面的竞                                 Advances in conversion of biomass to renewable platform molecule
                                                                   γ-valerolactone[J]. Zhejiang Chemical Industry (浙江化工), 2016,
            争吸附是影响催化效率的关键。LA 加氢合成 GVL
                                                                   47(3): 20-26.
            的决速步骤是 LA 中羰基的加氢还原,然而由于羧                           [16]  JIANG K, SHENG D, ZHANG Z, et al. Hydrogenation of levulinic
            基在固体催化剂表面具有更强的吸附能力,无溶剂                                 acid to γ-valerolactone in dioxane over mixed MgO-Al 2O 3 supported
                                                                   Ni catalyst[J]. Catalysis Today, 2016, 274: 55-59.
            体系中需要通过高温促进羧基从催化剂表面脱附或                             [17]  OSATIASHTIANI A, LEE A F, WILSON K. Recent advances in the
            延长反应时间,以此保证比较高的 GVL 产率。为了                              production of  γ-valerolactone from biomass-derived feedstocks  via
                                                                   heterogeneous catalytic transfer hydrogenation[J]. Journal of
            在无溶剂体系中促进 LA 高效还原合成 GVL,一方
                                                                   Chemical Technology & Biotechnology, 2017, 92(6): 1125-1135.
            面需要设计对羰基吸附更具选择性的催化剂;另一                             [18]  GIRISUTA B, JANSSEN L P B M, HEERES H J J G C. A kinetic
            方面可以在 LA 中加入少量能与羧基具有强相互作                               study on the decomposition of 5-hydroxymethylfurfural into levulinic
                                                                   acid[J].Green Chemistry, 2006, 8(8): 701-709.
            用的组分,进而弱化 LA 中羧基与羰基在催化剂表                           [19]  ALONSO D M, WETTSTEIN S G, MELLMER M A, et al. Integrated
            面的竞争吸附,提高无溶剂 LA 加氢合成 GVL 的催                            conversion of hemicellulose and cellulose from lignocellulosic
                                                                   biomass[J]. Energy Environmental Science, 2012, 6(1): 76-80.
            化效率。
                                                               [20]  OBREGON I, CORRO E, IZQUIERDO U,  et al. Levulinic acid
                                                                   hydrogenolysis on Al 2O 3-based Ni-Cu bimetallic catalysts[J]. Chinese
            参考文献:                                                  Journal of Catalysis, 2014, 35(5): 656-662.
            [1]   SMEETS E M W,  FAAIJ A P C,  LEWANDOWSKI I  M,  et al. A   [21]  YAN K, YANG Y Y, CHAI J J, et al. Catalytic reactions of gamma-
                 bottom-up assessment and review of global bio-energy potentials to   valerolactone: A platform to fuels and value-added chemicals[J].
                 2050[J]. Progress in Energy and Combustion Science, 2007, 33(1):   Applied Catalysis B: Environmental, 2015, 179: 292-304.
                 56-106.                                       [22]  LI J F, LI M J, ZHANG C  X,  et al. Construction of mesoporous
            [2]   LI Y, WU W B,  LI H,  et al. F-containing ionic liquid-catalyzed   Cu/ZrO 2-Al 2O 3  as a ternary catalyst for efficient  synthesis  of
                 benign and rapid hydrogenation  of bio-based furfural and relevant   γ-valerolactone from levulinic acid at low temperature[J]. Journal of
                 aldehydes using siloxane as hydrogen source[J]. Biomass Conversion   Catalysis, 2020, 381: 163-174.
                 and Biorefinery, 2019, 10(4): 795-802.        [23]  UPARE P P, LEE J M, DONG W H, et al. Selective hydrogenation of
            [3]   LYKO H,  DEERBERG G, WEIDNER E. Coupled production in   levulinic acid to γ-valerolactone over carbon-supported noble metal
                 biorefineries—Combined use of biomass as a source of energy, fuels   catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011,
                 and materials[J]. Journal of Biotechnology, 2009, 142(1): 78-86.     17(2): 287-292.
            [4]   PENG  L C (彭林才), LIN  L (林鹿), LI H (李辉). Conversion  of   [24]  DELHOMME C,  SCHAPER  L A,  MEI Z P,  et al. Catalytic
                 biomass into levulinate esters as novel energy chemicals[J]. Progress   hydrogenation  of levulinic acid in aqueous  phase[J]. Journal of
                 in Chemistry (化学进展), 2012, 24(5): 801-809.        Organometallic Chemistry, 2013, 724: 297-299.
            [5]   FENG Y C (冯云超), ZUO M (左淼), ZENG X H (曾宪海), et al.   [25]  MEHDI H, FABOS V, TUBA R, et al. Integration of homogeneous
                 Preparation of 5-hydroxymethylfurfural from glucose[J]. Progress in   and heterogeneous catalytic processes for a multi-step conversion of
                 Chemistry (化学进展), 2018, 30(2/3): 314-324.         biomass: From sucrose to  levulinic acid,  γ-valerolactone, 1,
            [6]   YAN L, YAO Q, FU  Y. Conversion of levulinic acid  and alkyl   4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes[J]. Topics in
                 levulinates into biofuels and high-value chemicals[J]. Green   Catalysis, 2008, 48(1/2/3/4): 49-54.
                 Chemistry, 2017, 19(23): 5527-5547.           [26]  TUKACS J M, KIRALY  D, STRADI A,  et al. Efficient catalytic
            [7]   OMORUYI U, PAGE S, HALLETT J, et al. Homogeneous catalyzed   hydrogenation of levulinic acid: A key step in biomass conversion[J].
                 reactions of levulinic acid: To gamma-valerolactone and beyond[J].   Green Chemistry, 2012, 14: 2057-2065.
                 ChemSusChem, 2016, 9(16): 2037-2047.          [27]  MANZER  L E.  Catalytic synthesis of alpha-methylene-gamma-
   24   25   26   27   28   29   30   31   32   33   34