Page 29 - 《精细化工》2021年第12期
P. 29
第 12 期 唐 兴,等: 水相和无溶剂体系中生物质基乙酰丙酸制备 γ-戊内酯的研究进展 ·2391·
(1)对于水相体系中催化 LA 加氢合成 GVL, [8] WINOTO H P, AHN B S, JAE J. Production of γ-valerolactone from
furfural by a single-step process using Sn-Al-beta zeolites: Optimizing
一方面,由于水的极性较强,特别是在较高温度下
the catalyst acid properties and process conditions[J]. Journal of
容易造成催化剂活性金属的流失,进而导致催化剂 Industrial and Engineering Chemistry, 2016, 40: 62-71.
部分失活。通过创新催化剂合成方式可以提高活性 [9] TANG X (唐兴), HU L (胡磊), SUN Y (孙勇), et al. Conversion of
biomass to novel platform chemical γ-valerolactone by selective
金属位点的水热稳定性。例如,设计合成具有核壳 reduction of levulinic acid[J]. Progress in Chemistry (化学进展),
结构的催化剂,或增强活性金属与载体相互作用力。 2013, 25(11): 1906-1914.
[10] WEI J N (魏珺楠), TANG X (唐兴), SUN Y (孙勇), et al. Applications
另一方面,催化剂载体如金属氧化物等在高温水热
of novel biomass-derived platform molecule γ-valerolactone[J].
条件下会发生水解,也会造成催化剂结构破坏,进 Progress in Chemistry (化学进展), 2016, 28(11): 1672-1681.
而导致催化剂部分失活。因此,设计合成具有较高 [11] ZHANG Z H. Synthesis of γ-valerolactone from carbohydrates and
its applications[J]. ChemSusChem,2016, 9(2):156-171.
水热稳定性的催化剂载体也是未来研究的重要方向 [12] TANG X, ZENG X H, LI Z, et al. Production of γ-valerolactone from
之一。此外,设计开发在温和反应条件下具有高效 lignocellulosic biomass for sustainable fuels and chemicals supply[J].
Renewable and Sustainable Energy Reviews, 2014, 40: 608-620.
催化活性的非贵金属加氢催化剂也是水相 LA 加氢
[13] DUTTA S, YU I K M, TSANG D C W, et al. Green synthesis of
合成 GVL 的重要研究方向之一。 gamma-valerolactone (GVL) through hydrogenation of biomass-
(2)对于无溶剂体系催化 LA 加氢合成 GVL, derived levulinic acid using non-noble metal catalysts: A critical
review[J]. Chemical Engineering Journal, 2019, 372: 992-1006.
由于 LA 具有一定的酸性,所以无溶剂体系中催化 [14] WANG J T (王京拓), ZHANG M H (张明慧). Catalytic reactions of
LA 加氢的催化剂需要具有较强的耐酸性。更重要的 levulinic acid as a biomass-derived platform molecule[J]. Petrochemical
Technology (石油化工), 2016, 45(5): 513-520.
是,LA 分子结构中包含了羰基和羧基两个主要的有 [15] ZHU L Y (朱龙云), YANG W X (杨文霞), LIU Y X (刘迎新).
机官能团,在无溶剂条件下二者在催化剂表面的竞 Advances in conversion of biomass to renewable platform molecule
γ-valerolactone[J]. Zhejiang Chemical Industry (浙江化工), 2016,
争吸附是影响催化效率的关键。LA 加氢合成 GVL
47(3): 20-26.
的决速步骤是 LA 中羰基的加氢还原,然而由于羧 [16] JIANG K, SHENG D, ZHANG Z, et al. Hydrogenation of levulinic
基在固体催化剂表面具有更强的吸附能力,无溶剂 acid to γ-valerolactone in dioxane over mixed MgO-Al 2O 3 supported
Ni catalyst[J]. Catalysis Today, 2016, 274: 55-59.
体系中需要通过高温促进羧基从催化剂表面脱附或 [17] OSATIASHTIANI A, LEE A F, WILSON K. Recent advances in the
延长反应时间,以此保证比较高的 GVL 产率。为了 production of γ-valerolactone from biomass-derived feedstocks via
heterogeneous catalytic transfer hydrogenation[J]. Journal of
在无溶剂体系中促进 LA 高效还原合成 GVL,一方
Chemical Technology & Biotechnology, 2017, 92(6): 1125-1135.
面需要设计对羰基吸附更具选择性的催化剂;另一 [18] GIRISUTA B, JANSSEN L P B M, HEERES H J J G C. A kinetic
方面可以在 LA 中加入少量能与羧基具有强相互作 study on the decomposition of 5-hydroxymethylfurfural into levulinic
acid[J].Green Chemistry, 2006, 8(8): 701-709.
用的组分,进而弱化 LA 中羧基与羰基在催化剂表 [19] ALONSO D M, WETTSTEIN S G, MELLMER M A, et al. Integrated
面的竞争吸附,提高无溶剂 LA 加氢合成 GVL 的催 conversion of hemicellulose and cellulose from lignocellulosic
biomass[J]. Energy Environmental Science, 2012, 6(1): 76-80.
化效率。
[20] OBREGON I, CORRO E, IZQUIERDO U, et al. Levulinic acid
hydrogenolysis on Al 2O 3-based Ni-Cu bimetallic catalysts[J]. Chinese
参考文献: Journal of Catalysis, 2014, 35(5): 656-662.
[1] SMEETS E M W, FAAIJ A P C, LEWANDOWSKI I M, et al. A [21] YAN K, YANG Y Y, CHAI J J, et al. Catalytic reactions of gamma-
bottom-up assessment and review of global bio-energy potentials to valerolactone: A platform to fuels and value-added chemicals[J].
2050[J]. Progress in Energy and Combustion Science, 2007, 33(1): Applied Catalysis B: Environmental, 2015, 179: 292-304.
56-106. [22] LI J F, LI M J, ZHANG C X, et al. Construction of mesoporous
[2] LI Y, WU W B, LI H, et al. F-containing ionic liquid-catalyzed Cu/ZrO 2-Al 2O 3 as a ternary catalyst for efficient synthesis of
benign and rapid hydrogenation of bio-based furfural and relevant γ-valerolactone from levulinic acid at low temperature[J]. Journal of
aldehydes using siloxane as hydrogen source[J]. Biomass Conversion Catalysis, 2020, 381: 163-174.
and Biorefinery, 2019, 10(4): 795-802. [23] UPARE P P, LEE J M, DONG W H, et al. Selective hydrogenation of
[3] LYKO H, DEERBERG G, WEIDNER E. Coupled production in levulinic acid to γ-valerolactone over carbon-supported noble metal
biorefineries—Combined use of biomass as a source of energy, fuels catalysts[J]. Journal of Industrial and Engineering Chemistry, 2011,
and materials[J]. Journal of Biotechnology, 2009, 142(1): 78-86. 17(2): 287-292.
[4] PENG L C (彭林才), LIN L (林鹿), LI H (李辉). Conversion of [24] DELHOMME C, SCHAPER L A, MEI Z P, et al. Catalytic
biomass into levulinate esters as novel energy chemicals[J]. Progress hydrogenation of levulinic acid in aqueous phase[J]. Journal of
in Chemistry (化学进展), 2012, 24(5): 801-809. Organometallic Chemistry, 2013, 724: 297-299.
[5] FENG Y C (冯云超), ZUO M (左淼), ZENG X H (曾宪海), et al. [25] MEHDI H, FABOS V, TUBA R, et al. Integration of homogeneous
Preparation of 5-hydroxymethylfurfural from glucose[J]. Progress in and heterogeneous catalytic processes for a multi-step conversion of
Chemistry (化学进展), 2018, 30(2/3): 314-324. biomass: From sucrose to levulinic acid, γ-valerolactone, 1,
[6] YAN L, YAO Q, FU Y. Conversion of levulinic acid and alkyl 4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes[J]. Topics in
levulinates into biofuels and high-value chemicals[J]. Green Catalysis, 2008, 48(1/2/3/4): 49-54.
Chemistry, 2017, 19(23): 5527-5547. [26] TUKACS J M, KIRALY D, STRADI A, et al. Efficient catalytic
[7] OMORUYI U, PAGE S, HALLETT J, et al. Homogeneous catalyzed hydrogenation of levulinic acid: A key step in biomass conversion[J].
reactions of levulinic acid: To gamma-valerolactone and beyond[J]. Green Chemistry, 2012, 14: 2057-2065.
ChemSusChem, 2016, 9(16): 2037-2047. [27] MANZER L E. Catalytic synthesis of alpha-methylene-gamma-