Page 154 - 《精细化工》2020年第2期
P. 154
·356· 精细化工 FINE CHEMICALS 第 38 卷
间没有显著差异(P>0.05)。与大孔树脂 LX-38 和聚 and its antibacterial and antioxidant activities[J]. Science and
酰胺相比,大孔树脂 HP-20 和 X-5 得到的洗脱液花 Technology of Food Industry (食品工业科技), 2019, 40(2): 175-182.
[8] ZHU C L (朱翠玲), CHEN M (陈铭),WANG M H (汪孟涵), et al. In
色苷纯度略高。其中,体积分数为 70%酸性乙醇经 vitro characterization of the anti-inflammatory effects of mulberry
大孔树脂 X-5 分离的花色苷纯度最高,比其他样品 extract and the molecular mechanisms[J]. Modern Food Science and
Technology (现代食品科技), 2017, 33(4): 61-66.
高出 1 倍 以上( P<0.05 ),但回收率相对较低 [9] SANDOVAL-RAMIREZ B A, CATALAN U, FERNANDEZ-
(4.34%)。使用大孔树脂 HP-20 和 X-5 脱溶剂使花 CASTILLEJO S, et al. Anthocyanin tissue bioavailability in animals:
色苷纯度从 5.76%提高到 30.00%左右。桑葚果渣样 Possible implications for human health. A systematic review[J].
Journal of Agricultural and Food Chemistry, 2018, 66: 11531-11543.
品与大孔树脂 X-5 回收样品经过 1.5 节处理,进行 [10] XUE H K (薛宏坤), TAN J Q (谭佳琪), LIU C (刘钗), et al.
HPLC 检测,对提取物中的花色苷采用外标法进行 Optimization of extraction process of anthocyanins from blueberry
pomace and its antitumor activity[J]. Fine Chemicals (精细化工),
定量,通过计算得到矢车菊素-3-O-葡萄糖苷与矢车
2019, 36(9): 1881-1890.
菊素-3-O-芸香糖苷和矢车菊素的提取量分别从桑 [11] ZHANG W N, HE J J, PAN Q H, et al. Separation and character
葚果渣中的 27.89、28.98 和 2.21 mg/g 富集到 195.41、 analysis of anthocyanins from mulberry (Morus alba L.) pomace[J].
Czech Journal of Food Science, 2011, 29: 268-276.
94.14 和 9.57 mg/g 花色苷粉末中。 [12] CAO R L (曹日亮), HU G Y(胡广英), LIANG X L (梁兴龙).
Production of protein feed from fruit residue[J]. Farm Products
3 结论 Processing (农产品加工), 2003, (1): 31-32.
[13] MOHDMAIDIN N, ORUNA-CONCHA M J, JAUREGI P. Surfactant
建立并优化了一种生态友好的综合提取-脱溶 Tween20 provides stabilisation effect on anthocyanins extracted from
red grape pomace[J]. Food Chemistry, 2019, 271: 224-231.
剂法,可以有效地从桑葚果渣中提取花色苷。得到
[14] ALLISON B J, SIMMONS C W. Obtaining multiple coproducts
桑葚果渣中提取和分离花色苷的最佳工艺条件为: from red grape pomace via anthocyanin extraction and biogas
n(氯化胆碱)∶n(草酸)=1∶1,水体积分数为 30%, production[J]. Journal of Agricultural and Food Chemistry, 2018, 66:
8045-8053.
料液比为 1∶20,超声波辅助(400 W),40 ℃条 [15] XUE H K (薛宏坤), HAN X Y (韩茜宇), TAN J Q (谭佳琪), et al.
件下提取 10 min,重复 3 次,然后以大孔树脂 X-5 Purification and thermal degradation kinetics of anthocyanins from
blackcurrant[J]. Fine Chemicals (精细化工), 2019, 36(4): 721-729.
为吸附载体进行脱溶剂回收花色苷,洗脱液经脱水
[16] SUN H Y (孙浩原). Application and research progress of eutectic
干燥后收集,得到最终产品。结果表明,花色苷的 solvents in chemical industry[J]. Liaoning Chemical Industry (辽宁
回收率可达 92.76%,纯度为 30.00%,可满足商业 化工), 2020, 49(4): 408-410.
[17] SKARPALEZOS D, DETSI A. Deep eutectic solvents as extraction
化应用,在食品、化妆品等领域都有着广泛的应用
media for valuable flavonoids from natural sources[J]. Applied
前景。 Science-Basel, 2019, 9: 4169.
[18] DAI Y T, WITKAMP G J, VERPOORTE R, et al. Natural deep
参考文献: eutectic solvents as a new extraction media for phenolic metabolites
in Carthamus tinctorius L.[J]. Analytical Chemistry, 2013, 85:
[1] WU B B (吴滨滨), ZHEN D D (甄丹丹), ZHEN H S (甄汉深), et al.
6272-6278.
Research progress of mulberry[J]. Asia-Pacific Traditional Medicine
(亚太传统医药), 2015, 11(6): 41-43. [19] BAKIRTZI C, TRIANTAFYLLIDOU K, MAKRIS D P. Novel lactic
[2] ZHOU Z M, ZHOU B, REN L P, et al. Effect of ensiled mulberry acid-based natural deep eutectic solvents: Efficiency in the
ultrasound-assisted extraction of antioxidant polyphenols from
leaves and sun-dried mulberry fruit pomace on finishing steer growth
performance, blood biochemical parameters, and carcass common native Greek medicinal plants[J]. Journal of Applied
characteristics[J]. PLoS One, 2014, 9: e85406. Research on Medicinal and Aromatic Plants, 2016, 3: 120-127.
[20] GUO N, KOU P, JIANG Y W, et al. Natural deep eutectic solvents
[3] PEL P, CHAE H S, NHOEK P, et al. Chemical constituents with
proprotein convertase subtilisin/kexin type 9 mRNA expression couple with integrative extraction technique as an effective approach
inhibitory activity from dried immature Morus alba fruits[J]. Journal for mulberry anthocyanin extraction[J]. Food Chemistry, 2019, 296:
78-85.
of Agricultural and Food Chemistry, 2017, 65: 5316-5321.
[4] MA J T (马金同), LIU L (刘露), LIU G Y (刘国英), et al. [21] DAI Y T, VERPOORTE R, CHOI Y H. Natural deep eutectic
Simultaneous determination of five anthocyanins in mulberry health solvents providing enhanced stability of natural colorants from
safflower (Carthamus tinctorius)[J]. Food Chemistry, 2014, 159:
wine by UPLC-Q-Tof/MS[J]. Liquor Making (酿酒), 2019, 46(4):
98-100. 116-121.
[5] WANG C (汪超), ZHANG L H (张莉会), QIAO Y (乔宇), et al. [22] FU R P (付瑞平). Application of deep eutectic solvent in extraction
of natural product[D]. Huai'an: Huaiyin Institute of Technology (淮
Study on different fermentation treatment antioxidant constituents
and activities of mulberry wine during fermentation[J]. The Food 阴工学院), 2019.
Industry (食品工业), 2018, 39(11): 204-209. [23] HUANG Y Y (黄玉岩). Study on extraction and purification of four
main compositions of anthocyanins from Ribes nigrum L.[D].
[6] MEMON A A, MEMON N, LUTHRIA D L, et al. Phenolic acids
profiling and antioxidant potential of mulberry (Morus laevigata W., Harbin: Northeast Forestry University (东北林业大学), 2017.
Morus nigra L., Morus alba L.) leaves and fruits grown in [24] ZHANG P J (张平静). The application of natural deep eutectic
solvents in preparation and analysing of flavonoid aglycones[D].
Pakistan[J]. Polish Journal of Food & Nutrition Sciences, 2010, 60:
25-32. Hangzhou: Zhejiang Gongshang University (浙江工商大学), 2019.
[7] CAO P J (曹培杰), CUI J (崔晋), MA Y H (马艳弘). Optimization [25] KOU P, KANG Y F, WANG L T, et al. An integrated strategy for
production of four anthocyanin compounds from Ribes nigrum L. by
of ultrasonic enzymatic extraction of flavonoids from mulberry seed