Page 138 - 《精细化工》2021年第3期
P. 138
·558· 精细化工 FINE CHEMICALS 第 38 卷
的扩散电阻 [16-17] 。电池在 0.1 A/g 电流密度下循环 1 2016, 45(22): 6345-6404.
圈后的电荷转移电阻为 300 Ω,循环 50 圈后电荷转 [4] WANG J, HE X, PAILLARD E, et al. Lithium-and manganese-rich
oxide cathode materials for high-energy lithium ion batteries[J].
移电阻只有 125 Ω。电荷转移电阻减小主要归因于 Advanced Energy Materials, 2016, 6(21): 1600906.
电极材料通过循环而不断地活化,导电性能变好。 [5] ZHAO Y, WANG L P, SOUGRATI M T, et al. A review on design
strategies for carbon based metal oxides and sulfdes nanocomposites
为了进一步评估材料的电化学结构稳定性,对
for high performance Li and Na ion battery anodes[J]. Advanced
颗粒状 NiMoO 4 电极循环 10 圈后进行了 TEM 测试, Energy Materials, 2017, 7(9): 1601424.
结果见图 11。由图 11 可知,NiMoO 4 电极的颗粒状 [6] LI W D, SONG B H, MANTHIRAM A. High-voltage positive
electrode materials for lithium-ion batteries[J]. Chemical Society
结构保持较好,表明材料结构稳定性好,从而进一
Reviews, 2017, 46(10): 3006-3059.
步解释了其具有优异循环稳定性的原因。 [7] XU X D, CAO R G, JEONG S Y, et al. Spindle-like mesoporous
alpha-Fe 2O 3 anode material prepared from MOF template for
high-rate lithium batteries[J]. Nano Letters, 2012, 12(9): 4988-4991.
[8] GENG P B, ZHENG S S, TANG H, et al. Transition metal sulfides
based on graphene for electrochemical energy storage[J]. Advanced
Energy Materials, 2018, 8(15): 1703259.
[9] DU F H, WANG K X, CHEN J S. Strategies to succeed in improving
the lithium-ion storage properties of silicon nanomaterials[J]. Journal
of Materials Chemistry A, 2016, 4(1): 32-50.
[10] LI X, BAI J T, WANG H. Synthesis of hierarchical free-standing
NiMoO 4/reduced graphene oxide membrane for high-performance
lithium storage[J]. Journal of Solid State Electrochemistry, 2018,
图 11 颗粒状 NiMoO 4 循环 10 圈后的 TEM 图 22(9): 2659-2669.
Fig. 11 TEM image of granular NiMoO 4 after 10 cycles [11] WANG S G, LIN J, FAN C Y, et al. Target encapsulating NiMoO 4
nanocrystals into 1D carbon nanofibers as free-standing anode
material for lithium-ion batteries with enhanced cycle
3 结论 performance[J]. Journal of Alloys and Compounds, 2020, 830:
154648.
采用简单的溶剂热法合成了前体材料,然后通 [12] ZHOU L, ZHUANG Z C, ZHAO H H, et al. Intricate hollow
过 在空气 条件 下高温 退火 处理得 到了 颗粒 状 structures: Controlled synthesis and applications in energy storage
and conversion[J]. Advanced Materials, 2017, 29(20): 1602914.
NiMoO 4 。颗粒状 NiMoO 4 电极组装成半电池进行电 [13] GUO W X, SUN W W, WANG Y. Multilayer CuO@NiO hollow
化学测试。结果表明,电流密度为 0.1 A/g 时,首圈 spheres: Microwave-assisted metal organic framework derivation and
比容量达到 1076 mA·h/g。恒流充放电 250 圈后,比 highly reversible structure-matched stepwise lithium storage[J]. ACS
Nano, 2015, 9(11): 11462-11471.
容量保持率为 77%,性能优良。另外,颗粒状 NiMoO 4 [14] AHN J H, PARK G D, KANG Y C, et al. Phase-pure beta-NiMoO 4
也展现出优异的倍率性能。当前,钼基材料应用锂 yolk-shell spheres for high-performance anode materials in lithium-ion
batteries[J]. Electrochimica Acta, 2015, 174: 102-110.
电的报道相对较少,尤其是电化学性能好的更少,
[15] WANG B, LI S M, WU X Y, et al. Hierarchical NiMoO 4 nanowire
所以开发钼基电极具有较好的应用前景。 arrays supported on macroporous graphene foam as binder-free 3D
anodes for high-performance lithium storage[J]. Physical Chemistry
参考文献: Chemical Physics, 2016, 18(2): 908-915.
[16] YOKOJI T, KAMEYAMA Y, MARUYAMA N, et al. High-capacity
[1] TANG W, YIN X S, KANG S J, et al. Lithium silicide surface
enrichment: A solution to lithium metal battery[J]. Advanced Materials, organic cathode active materials of 2,2'-bis-p-benzoquinone derivatives
2018, 30(34): 1801745. for rechargeable batteries[J]. Journal of Materials Chemistry A, 2016,
[2] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion 4(15): 5457-5466.
batteries with high energy densities[J]. Nature Reviews Materials, [17] ZHANG Y S, MURTAZA I, LIU D, et al. Understanding the
2016, 1(4): 16013. mechanism of improvement in practical specific capacity using halogen
[3] SCHON T B, MCALLISTER B T, LI P F, et al. The rise of organic substituted anthraquinones as cathode materials in lithium batteries[J].
electrode materials for energy storage[J]. Chemical Society Reviews, Electrochimica Acta, 2017, 224: 622-624.