Page 138 - 《精细化工》2021年第3期
P. 138

·558·                             精细化工   FINE CHEMICALS                                 第 38 卷

            的扩散电阻      [16-17] 。电池在 0.1 A/g 电流密度下循环 1              2016, 45(22): 6345-6404.
            圈后的电荷转移电阻为 300 Ω,循环 50 圈后电荷转                       [4]   WANG J, HE X, PAILLARD E, et al. Lithium-and manganese-rich
                                                                   oxide cathode materials for high-energy lithium ion  batteries[J].
            移电阻只有 125  Ω。电荷转移电阻减小主要归因于                             Advanced Energy Materials, 2016, 6(21): 1600906.
            电极材料通过循环而不断地活化,导电性能变好。                             [5]   ZHAO Y, WANG L P, SOUGRATI M T, et al. A review on design
                                                                   strategies for carbon based metal oxides and sulfdes nanocomposites
                 为了进一步评估材料的电化学结构稳定性,对
                                                                   for high performance Li  and Na ion  battery anodes[J].  Advanced
            颗粒状 NiMoO 4 电极循环 10 圈后进行了 TEM 测试,                      Energy Materials, 2017, 7(9): 1601424.
            结果见图 11。由图 11 可知,NiMoO 4 电极的颗粒状                    [6]   LI  W D, SONG  B H, MANTHIRAM A. High-voltage positive
                                                                   electrode  materials for lithium-ion batteries[J]. Chemical Society
            结构保持较好,表明材料结构稳定性好,从而进一
                                                                   Reviews, 2017, 46(10): 3006-3059.
            步解释了其具有优异循环稳定性的原因。                                 [7]   XU X D, CAO R  G, JEONG S Y,  et al. Spindle-like mesoporous
                                                                   alpha-Fe 2O 3 anode material prepared from MOF template for
                                                                   high-rate lithium batteries[J]. Nano Letters, 2012, 12(9): 4988-4991.
                                                               [8]   GENG P B, ZHENG S S, TANG H, et al. Transition metal sulfides
                                                                   based on graphene for electrochemical energy storage[J]. Advanced
                                                                   Energy Materials, 2018, 8(15): 1703259.
                                                               [9]   DU F H, WANG K X, CHEN J S. Strategies to succeed in improving
                                                                   the lithium-ion storage properties of silicon nanomaterials[J]. Journal
                                                                   of Materials Chemistry A, 2016, 4(1): 32-50.
                                                               [10]  LI X, BAI J T, WANG H. Synthesis of  hierarchical free-standing
                                                                   NiMoO 4/reduced graphene oxide membrane for high-performance
                                                                   lithium storage[J]. Journal  of Solid  State Electrochemistry, 2018,
                图 11   颗粒状 NiMoO 4 循环 10 圈后的 TEM 图                 22(9): 2659-2669.
              Fig. 11    TEM image of granular NiMoO 4  after 10 cycles   [11]  WANG S G, LIN J, FAN C Y, et al. Target encapsulating NiMoO 4
                                                                   nanocrystals  into  1D carbon  nanofibers as free-standing anode
                                                                   material  for  lithium-ion  batteries  with  enhanced  cycle
            3    结论                                                performance[J]. Journal of Alloys and Compounds, 2020, 830:
                                                                   154648.
                 采用简单的溶剂热法合成了前体材料,然后通                          [12]  ZHOU L, ZHUANG Z C, ZHAO  H H,  et al. Intricate hollow
            过 在空气 条件 下高温 退火 处理得 到了 颗粒 状                            structures: Controlled synthesis and applications in energy storage
                                                                   and conversion[J]. Advanced Materials, 2017, 29(20): 1602914.
            NiMoO 4 。颗粒状 NiMoO 4 电极组装成半电池进行电                   [13]  GUO W  X,  SUN W W, WANG  Y.  Multilayer CuO@NiO hollow
            化学测试。结果表明,电流密度为 0.1 A/g 时,首圈                           spheres: Microwave-assisted metal organic framework derivation and
            比容量达到 1076 mA·h/g。恒流充放电 250 圈后,比                       highly reversible structure-matched stepwise lithium storage[J]. ACS
                                                                   Nano, 2015, 9(11): 11462-11471.
            容量保持率为 77%,性能优良。另外,颗粒状 NiMoO 4                     [14]  AHN J H, PARK G D, KANG Y C, et al. Phase-pure beta-NiMoO 4
            也展现出优异的倍率性能。当前,钼基材料应用锂                                 yolk-shell spheres for high-performance anode materials in lithium-ion
                                                                   batteries[J]. Electrochimica Acta, 2015, 174: 102-110.
            电的报道相对较少,尤其是电化学性能好的更少,
                                                               [15]  WANG B, LI S M, WU X Y, et al. Hierarchical NiMoO 4 nanowire
            所以开发钼基电极具有较好的应用前景。                                     arrays supported on macroporous graphene foam as binder-free 3D
                                                                   anodes for high-performance lithium storage[J]. Physical Chemistry
            参考文献:                                                  Chemical Physics, 2016, 18(2): 908-915.
                                                               [16]  YOKOJI T, KAMEYAMA Y, MARUYAMA N, et al. High-capacity
            [1]   TANG W,  YIN X S, KANG S J,  et al. Lithium silicide surface
                 enrichment: A solution to lithium metal battery[J]. Advanced Materials,   organic cathode active materials of 2,2'-bis-p-benzoquinone derivatives
                 2018, 30(34): 1801745.                            for rechargeable batteries[J]. Journal of Materials Chemistry A, 2016,
            [2]   CHOI J W, AURBACH D. Promise and reality of post-lithium-ion   4(15): 5457-5466.
                 batteries with high energy densities[J].  Nature Reviews  Materials,   [17]  ZHANG Y S, MURTAZA I, LIU  D,  et al. Understanding the
                 2016, 1(4): 16013.                                mechanism of improvement in practical specific capacity using halogen
            [3]   SCHON T B, MCALLISTER B T, LI P F, et al. The rise of organic   substituted anthraquinones as cathode materials in lithium batteries[J].
                 electrode materials for energy storage[J]. Chemical Society Reviews,     Electrochimica Acta, 2017, 224: 622-624.
   133   134   135   136   137   138   139   140   141   142   143