Page 133 - 《精细化工》2021年第3期
P. 133
第 3 期 曹 成,等: 氨基脲衍生物的合成及其阴离子识别性能 ·553·
−
2+
Cu and CN [J]. Spectrochimica Acta Part A: Molecular and Biomolecular and fluorescent sensor with aggregation induced emission for detection
Spectroscopy, 2019, 207(15): 6-15. of cyanide anion[J]. Dyes and Pigments, 2019, 164: 165-173.
[6] YOU G R, PAR G J, LEE S A, et al. A single chemosensor for [18] REDDY P M, HSIEH S R, CHANG C J, et al. Detection of cyanide
−
–
multiple target anions: The simultaneous detection of CN and OAc ions in aqueous solutions using cost effective colorimetric sensor[J].
in aqueous media[J]. Sensors and Actuators B: Chemical, 2014, 202: Journal of Hazardous Materials, 2017, 334: 93-103.
645-655. [19] ATHAR M, LONE M Y, JHA P C. Recognition of anions using urea
[7] DWIVEDI S K, RAZI S S, MISRA A. Sensitive colorimetric detection and thiourea substituted calixarenes: A DFT assessment of non-covalent
−
−
of CN and AcO anions in a semi-aqueous environment through a interactions[J]. Chemical Physics, 2018, 501: 68-77.
coumarin-naphthalene conjugate azo dye[J]. New Journal of Chemistry, [20] TAVAKKALI H, DEILAMY-RAD G, PARHAMI A, et al. A novel
2019, 43: 5126-5132. cyanide-selective colorimetric and fluorescent chemosensor: First
[8] KAUR N, KAUR G, ALREJA P. 1,10-Phenanthroline based ESIPT molecular security keypad lock based on phosphotungstic acid and
–
–
2+
sensor for cascade recognition of Cu and CN ions[J]. Journal of CN inputs[J]. Journal of Hazardous Materials, 2014, 266: 189-197.
Photochemistry and Photobiology A: Chemistry, 2018, 353: 138-142. [21] BADDI S, PALANISAMY A. Thermal and ultrasound induced gelation
[9] WU C J, WANG J B, SHEN J J, et al. A colorimetric quinoline-based of bis(acyl-semicarbazides)-Investigations on the anion tuning and
chemosensor for sequential detection of copper ion and cyanide dye adsorbing properties of their gels[J]. Sensors and Actuators B:
anions[J]. Tetrahedron, 2017, 73: 5715-5719. Chemical, 2017, 245: 711-719.
[10] LIN Q, ZHONG K P, ZHU J H, et al. Iodine controlled pillar[5] [22] KATO R, KAWAI A, HATTORI T. Optical detection of anions using
arene-based multiresponsive supramolecular polymer for fluorescence N-(4-(4-nitrophenylazo)phenyl)-N'-propyl thiourea bound silica film[J].
detection of cyanide, mercury, and cysteine[J]. Macromolecules, New Journal of Chemistry, 2013, 37: 717-721.
2017, 50: 7863-7871. [23] LI Y J, ZHANG Z, WANG Y Q, et al. Phenanthroline derivative
[11] XIE F Z, LIN X C, WU X P, et al. Solid phase extraction of lead based europium(Ⅲ) covalently bonded silica hybrid material for
(Ⅱ), copper (Ⅱ), cadmium (Ⅱ) and nickel (Ⅱ) using gallic acid- high-selectivity sensing of anion and small organic molecule[J]. Journal
modified silica gel prior to determination by flame atomic absorption of Photochemistry and Photobiology A: Chemistry, 2019, 382: 111917.
spectrometry[J]. Talanta, 2008, 74: 836-843. [24] CAO C (曹成), QIU M H (仇满红), YOU X M (尤兴梅), et al.
[12] FAGHIRI F, GHORBANI F. Colorimetric and naked eye detection of Syntheses of tripodal benzoyl thiourea ions receptors and their
2+
trace Hg ions in the environmental water samples based on plasmonic recognition properties[J]. Chemistry (化学通报), 2020, (3): 246-252.
response of sodium alginate impregnated by silver nanoparticles[J]. [25] SOHN D H, PARK J, CHO S J, et al. Novel anion receptors for
Journal of Hazardous Materials, 2019, 374: 329-340. selective recognition of dimethyl phosphinate and carboxylate[J].
[13] MUWAL P K, NAYAL A, JAISWAL M K, et al. A dipyrromethane Tetrahedron, 2017, 73(2): 212-221.
2+
–
based receptor as a dual colorimetrc sensor for F and Cu ions[J]. [26] BENESI H A, HILDEBRAND J H. A spectrophotometric investigation
Tetrahedron Letters, 2018, 59(1): 29-32. of the interaction of iodine with aromatic hydrocarbons[J]. Journal of
[14] HUANG Y R (黄运瑞), CHEN X (陈欣), HAN W F (韩文芬). the American Chemical Society, 1949, 71(8): 2703-2707.
Synthesis and anion recognition properties of N-benzoyl-N-benzothiazole [27] MILLER J N, MILLER J C. Statistics and chemometrics for analytical
thiourea[J]. Fine Chemicals (精细化工), 2018, 35(8): 1267-1270. chemistry[M]. 6th ed. Melih Bayar: Prentice Hall (UK), 2014:
[15] MUKHERJEE S, BETAL S, CHATTIPADHYAY A P. A novel turn-on 124-127.
red light emitting chromofluorogenic hydrazone based fluoride sensor: [28] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09,
Spectroscopy and DFT studies[J]. Journal of Photochemistry and Revision a. 01[CP]. Wallingford, CT: Gaussian Inc, 2009.
Photobiology A: Chemistry, 2020, 389: 112219. [29] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio
[16] LI Z, LIU C, WANG S J, et al. Visual detection of cyanide ion in calculation of vibrational absorption and circular dichroism spectra
aqueous medium by a new chromogenic azo-azomethine chemosensor[J]. using density functional force fields[J]. Journal of Physical Chemistry,
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1994, 98: 11623-11627.
2019, 210: 321-328. [30] LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J].
[17] ZOU Q Q, TAO F R, WU H T, et al. A new carbazole-based colorimetric Journal of Computational Chemistry, 2012, 33: 580-592.
(上接第 482 页) Mycologie Médicale, 2019, 29(1): 7-13.
[69] LABAN B, RALEVIĆ U, PETROVIĆ S, et al. Green synthesis and [73] TANG B, LIU J, FAN L P, et al. Green preparation of gold
characterization of nontoxic L-methionine capped silver and gold nanoparticles with Tremella fuciformis for surface enhanced Raman
nanoparticles[J]. Journal of Inorganic Biochemistry, 2020, 204: scattering sensing[J]. Applied Surface Science, 2018, 427: 210-218.
110958. [74] ZHANG X W, QU Y Y, SHEN W L, et al. Biogenic synthesis of
[70] DOOST H A, GHASEDI A, KOUSHKI E. Electrical effects of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for
AuNPs and PVA polymers on optical band gap and thermo-optical catalytic reduction of nitrophenols[J]. Colloids and Surfaces A:
properties of TiO 2 nanoparticles[J]. Journal of Molecular Liquids, Physicochemical and Engineering Aspects, 2016, 497: 280-285.
2021, 323: 115074. [75] QU Y Y, SHEN W L, PEI X F, et al. Biosynthesis of gold
[71] IBRAHIM H M, REDA M M, KLINGNER A. Preparation and nanoparticles by Trichoderma sp. WL-Go for azo dyes
characterization of green carboxymethylchitosan (CMCS)— decolorization[J]. Journal of Environmental Sciences, 2017, 56:
Polyvinyl alcohol (PVA) electrospun nanofibers containing gold 79-86.
nanoparticles (AuNPs) and its potential use as biomaterials[J]. [76] SANGHI R, VERMA P, PURI S. Enzymatic formation of gold
International Journal of Biological Macromolecules, 2020, 151: nanoparticles using Phanerochaete chrysosporium[J]. Advances in
821-829. Chemical Engineering and Science, 2011, 1(3): 154-162.
[72] NAIMI-SHAMEL N, POURALI P, DOLATABADI S. Green [77] CASTRO M E, COTTET L, CASTILLO A. Biosynthesis of gold
synthesis of gold nanoparticles using Fusarium oxysporum and nanoparticles by extracellular molecules produced by the phytopathogenic
antibacterial activity of its tetracycline conjugant[J]. Journal de fungus Botrytis cinerea[J]. Materials Letters, 2014, 115: 42-44.