Page 42 - 《精细化工》2021年第3期
P. 42
·462· 精细化工 FINE CHEMICALS 第 38 卷
with formaldehyde[J]. Journal of the American Chemical Society, 13464-13468.
1952, 74(22): 5728-5731. [35] MA F W, SUN L P, ZHAO H, et al. Supercapacitor performance of
[19] MERLINE D J, VUKUSIC S, ABDALA A A. Melamine formaldehyde: hollow carbon spheres by direct pyrolysis of melamine-formaldehyde
Curing studies and reaction mechanism[J]. Polymer Journal, 2013, resin spheres[J]. Chemical Research in Chinese Universities, 2013,
45(4): 413-419. 29(4): 735-742.
[20] SCHWARZ D, WEBER J. Organic-solvent free synthesis of mesoporous [36] SHAO J Q, MA F W, WU G, et al. Facile preparation of 3D
and narrow-dispersed melamine resin particles for water treatment nanostructured O/N co-doped porous carbon constructed by
applications[J]. Polymer, 2018, 155: 83-88. interconnected carbon nanosheets for excellent-performance
[21] MERLINE D J, VUKUSIC S, ABDALA A A. Melamine supercapacitors[J]. Electrochimica Acta, 2016, 222: 793-805.
formaldehyde: Curing studies and reaction mechanism[J]. Polymer [37] HOU J H, CAO C B, IDREES F, et al. Hierarchical porous
Journal, 2013, 45(4): 413-419. nitrogen-doped carbon nanosheets derived from silk for ultrahigh-
[22] SUN X, ZHANG W T, TANG D H, et al. Co-entrapped, N-doped capacity battery anodes and supercapacitors[J]. ACS Nano, 2015,
mesoporous carbons prepared from melamine formaldehyde resins 9(3): 2556-2564.
with CoCl 2 as template for hydrogen evolution[J]. Journal of Colloid [38] TIAN Y H (田艳红), FU X T (付旭涛), WU B R (吴伯荣).
and Interface Science, 2018, 516: 416-422. Development of porous carbon materials for electric double-layer
[23] SUSI T, PICHLER T, AYALA P. X-ray photoelectron spectroscopy of capacitor[J]. Chinese Journal of Power Sources (电源技术), 2002,
graphitic carbon nanomaterials doped with heteroatoms[J]. Beilstein 26(6): 466-469.
Journal of Nanotechnology, 2015, 6(1): 177-192. [39] KE P (柯萍), ZENG D L (曾丹林), XING H (邢辉), et al. Research
[24] LIU H Y, SONG H H, CHEN X H, et al. Effects of nitrogen- and progress of nitrogen-doped modified carbon materials[J]. Applied
oxygen-containing functional groups of activated carbon nanotubes Chemical Industry (应用化工), 2020, 49(7): 1818-1822.
on the electrochemical performance in supercapacitors[J]. Journal of [40] SHI Z Q (时志强), WANG C Y (王成扬), WANG Y S (王艳素), et
Power Sources, 2015, 285: 303-309. al. Melamine-based carbon as electrode materials for electrochemical
[25] XU B, HOU S S, CAO G P, et al. Sustainable nitrogen-doped porous capacitor[J]. Chinese Journal of Power Sources (电源技术), 2007,
carbon with high surface areas prepared from gelatin for 31(7): 526-529.
supercapacitors[J]. Journal of Materials Chemistry, 2012, 22(36): [41] ZHU Y H, XIANG X X, LIU E H, et al. An activated microporous
19088-19093. carbon prepared from phenol-melamine-formaldehyde resin for
[26] XU B, ZHENG D F, JIA M Q, et al. Nitrogen-doped porous carbon lithium ion battery anode[J]. Materials Research Bulletin, 2012,
simply prepared by pyrolyzing a nitrogen-containing organic salt for 47(8): 2045-2050.
supercapacitors[J]. Electrochimica Acta, 2013, 98: 176-182. [42] ZHU Y H, XIANG X X, LIU E H, et al. A microporous carbon
[27] YANG X P, WU D C, CHEN X M, et al. Nitrogen-enriched derived from phenol-melamine-formaldehyde resin by K 2CO 3
nanocarbons with a 3-D continuous mesopore structure from activation for lithium ion batteries[J]. Ionics, 2013, 19(3): 409-414.
polyacrylonitrile for supercapacitor application[J]. Journal of Physical [43] CHEN Z X (陈彰旭), ZHENG B Y (郑炳云), LI X X (李先学), et al.
Chemistry C, 2010, 114(18): 8581-8586. Progress in the preparation of nanomaterials employing template
[28] ZHAN C, ZHANG Y, CUMMING P T, et al. Enhancing graphene method[J]. Chemical Industry and Engineering Progress (化工进展),
capacitance by nitrogen: Effects of doping configuration and 2010, 29(1): 94-99.
concentration[J]. Physical Chemistry Chemical Physics, 2016, 18(6): [44] LI W R, CHEN D H, LI Z, et al. Nitrogen-containing carbon spheres
4668-4674. with very large uniform mesopores: The superior electrode materials
[29] HAO L, LI X L, ZHI L J. Carbonaceous electrode materials for for EDLC in organic electrolyte[J]. Carbon, 2007, 45(9): 1757-1763.
supercapacitors[J]. Advanced Materials, 2013, 25(28): 3899-3904. [45] KE C C, ZHANG N, LIU F, et al. Deflated balloon-like nitrogen-rich
[30] WANG D W, LI F, YIN L C, et al. Nitrogen-doped carbon monolith sulfur-containing hierarchical porous carbons for high-rate
for alkaline supercapacitors and understanding nitrogen-induced supercapacitors[J]. Applied Surface Science, 2019, 484: 716-725.
redox transitions[J]. Chemistry-A European Journal, 2012, 18(17): [46] LI T T, YANG G W, WANG J, et al. Excellent electrochemical
5345-5351. performance of nitrogen-enriched hierarchical porous carbon electrodes
[31] BAI X, CAO D X, ZHANG H Y. Scalable construction of prepared using nano-CaCO 3 as template[J]. Journal of Solid State
heteroatom-doped and hierarchical core-shell MnO 2 nanoflakes on Electrochemistry, 2013, 17(10): 2651-2660.
mesoporous carbon for high performance supercapacitor devices[J]. [47] FISET E, RUFFORD T E, HULICOVA-JURCAKOVA D. Poly
Inorganic Chemistry Frontiers, 2020, 7(2): 411-420. (vinylidene fluoride) as a porogen to prepare nitrogen-enriched
[32] YANG J, XU M, WANG J Y, et al. A facile approach to prepare porous carbon electrode materials from pyrolysis of melamine
multiple heteroatom-doped carbon materials from imine-linked resin[J]. Materials Today Communications, 2015, 3: 36-42.
porous organic polymers[J]. Scientific Reports, 2018, 8(1): 1-11. [48] HU B, ZHANG W B, YAN K, et al. Nitrogen-doped micro-nano
[33] WANG L, ZHENG Y L, WANG X H, et al. Nitrogen-doped porous carbon spheres with multi-scale pore structure obtained from
carbon/Co 3O 4 nanocomposites as anode materials for lithium-ion interpenetrating polymer networks for electrochemical capacitors[J].
batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(10): RSC Advances, 2018, 8(61): 35083-35093.
7117-7125. [49] LIU E H, SHEN H J, XIANG X X, et al. A novel activated
[34] MA F W, ZHAO H, SUN L P, et al. A facile route for nitrogen-doped nitrogen-containing carbon anode material for lithium secondary
hollow graphitic carbon spheres with superior performance in batteries[J]. Materials Letters, 2012, 67(1): 390-393.
supercapacitors[J]. Journal of Materials Chemistry, 2012, 22(27): [50] RADHAKRISHNAN A K, NAIR S, SANTHANAGOPALAN D.