Page 42 - 《精细化工》2021年第3期
P. 42

·462·                             精细化工   FINE CHEMICALS                                 第 38 卷

                 with formaldehyde[J]. Journal of the  American Chemical Society,   13464-13468.
                 1952, 74(22): 5728-5731.                      [35]  MA F W, SUN L P, ZHAO H, et al. Supercapacitor performance of
            [19]  MERLINE D J, VUKUSIC S, ABDALA A A. Melamine formaldehyde:   hollow carbon spheres by direct pyrolysis of melamine-formaldehyde
                 Curing studies and reaction mechanism[J]. Polymer Journal, 2013,   resin spheres[J]. Chemical  Research in Chinese Universities, 2013,
                 45(4): 413-419.                                   29(4): 735-742.
            [20]  SCHWARZ D, WEBER J. Organic-solvent free synthesis of mesoporous   [36]  SHAO J Q, MA  F W, WU G,  et al. Facile preparation of 3D
                 and narrow-dispersed melamine resin particles for water treatment   nanostructured O/N co-doped porous carbon constructed by
                 applications[J]. Polymer, 2018, 155: 83-88.       interconnected carbon nanosheets for excellent-performance
            [21]  MERLINE D J, VUKUSIC S,  ABDALA A A. Melamine    supercapacitors[J]. Electrochimica Acta, 2016, 222: 793-805.
                 formaldehyde: Curing studies and reaction mechanism[J]. Polymer   [37]  HOU J H,  CAO C B, IDREES F,  et al. Hierarchical porous
                 Journal, 2013, 45(4): 413-419.                    nitrogen-doped carbon nanosheets derived from silk for  ultrahigh-
            [22]  SUN X, ZHANG  W T, TANG D  H,  et al. Co-entrapped, N-doped   capacity battery anodes and supercapacitors[J]. ACS Nano, 2015,
                 mesoporous carbons prepared from  melamine formaldehyde resins   9(3): 2556-2564.
                 with CoCl 2 as template for hydrogen evolution[J]. Journal of Colloid   [38]  TIAN  Y H (田艳红), FU X T (付旭涛), WU B R  (吴伯荣).
                 and Interface Science, 2018, 516: 416-422.        Development of porous carbon materials for electric double-layer
            [23]  SUSI T, PICHLER T, AYALA P. X-ray photoelectron spectroscopy of   capacitor[J]. Chinese Journal of Power Sources (电源技术), 2002,
                 graphitic carbon nanomaterials doped with heteroatoms[J]. Beilstein   26(6): 466-469.
                 Journal of Nanotechnology, 2015, 6(1): 177-192.   [39]  KE P (柯萍), ZENG D L (曾丹林), XING H (邢辉), et al. Research
            [24]  LIU H Y, SONG H H, CHEN X H, et al. Effects of nitrogen- and   progress of nitrogen-doped modified  carbon materials[J]. Applied
                 oxygen-containing functional groups of activated carbon nanotubes   Chemical Industry (应用化工), 2020, 49(7): 1818-1822.
                 on the electrochemical performance in supercapacitors[J]. Journal of   [40]  SHI Z Q (时志强), WANG C Y (王成扬), WANG Y S (王艳素), et
                 Power Sources, 2015, 285: 303-309.                al. Melamine-based carbon as electrode materials for electrochemical
            [25]  XU B, HOU S S, CAO G P, et al. Sustainable nitrogen-doped porous   capacitor[J]. Chinese Journal of Power Sources (电源技术), 2007,
                 carbon with high surface areas  prepared from gelatin for   31(7): 526-529.
                 supercapacitors[J]. Journal of Materials Chemistry, 2012, 22(36):   [41]  ZHU Y H, XIANG X X, LIU E H, et al. An activated microporous
                 19088-19093.                                      carbon prepared from phenol-melamine-formaldehyde resin for
            [26]  XU B, ZHENG D F, JIA M Q, et al. Nitrogen-doped porous carbon   lithium ion battery anode[J]. Materials Research  Bulletin, 2012,
                 simply prepared by pyrolyzing a nitrogen-containing organic salt for   47(8): 2045-2050.
                 supercapacitors[J]. Electrochimica Acta, 2013, 98: 176-182.   [42]  ZHU  Y H, XIANG X X, LIU E H,  et al. A  microporous carbon
            [27]  YANG X P,  WU D C, CHEN X  M,  et al. Nitrogen-enriched   derived from phenol-melamine-formaldehyde resin by K 2CO 3
                 nanocarbons with a 3-D continuous mesopore structure from   activation for lithium ion batteries[J]. Ionics, 2013, 19(3): 409-414.
                 polyacrylonitrile for supercapacitor application[J]. Journal of Physical   [43]  CHEN Z X (陈彰旭), ZHENG B Y (郑炳云), LI X X (李先学), et al.
                 Chemistry C, 2010, 114(18): 8581-8586.            Progress  in the preparation of nanomaterials employing template
            [28]  ZHAN  C,  ZHANG Y, CUMMING P  T, et al. Enhancing graphene   method[J]. Chemical Industry and Engineering Progress (化工进展),
                 capacitance by nitrogen: Effects of doping configuration and   2010, 29(1): 94-99.
                 concentration[J]. Physical Chemistry Chemical Physics, 2016, 18(6):   [44]  LI W R, CHEN D H, LI Z, et al. Nitrogen-containing carbon spheres
                 4668-4674.                                        with very large uniform mesopores: The superior electrode materials
            [29]  HAO L, LI  X L, ZHI  L  J. Carbonaceous electrode materials for   for EDLC in organic electrolyte[J]. Carbon, 2007, 45(9): 1757-1763.
                 supercapacitors[J]. Advanced Materials, 2013, 25(28): 3899-3904.   [45]  KE C C, ZHANG N, LIU F, et al. Deflated balloon-like nitrogen-rich
            [30]  WANG D W, LI F, YIN L C, et al. Nitrogen-doped carbon monolith   sulfur-containing  hierarchical porous carbons  for high-rate
                 for alkaline supercapacitors and understanding nitrogen-induced   supercapacitors[J]. Applied Surface Science, 2019, 484: 716-725.
                 redox transitions[J]. Chemistry-A European Journal, 2012, 18(17):   [46]  LI T T, YANG  G W, WANG J,  et al. Excellent electrochemical
                 5345-5351.                                        performance of nitrogen-enriched hierarchical porous carbon electrodes
            [31]  BAI X, CAO D X, ZHANG H Y. Scalable construction of   prepared using nano-CaCO 3 as template[J]. Journal of Solid State
                 heteroatom-doped and hierarchical core-shell MnO 2 nanoflakes on   Electrochemistry, 2013, 17(10): 2651-2660.
                 mesoporous carbon for high performance supercapacitor devices[J].   [47]  FISET E, RUFFORD  T E, HULICOVA-JURCAKOVA D. Poly
                 Inorganic Chemistry Frontiers, 2020, 7(2): 411-420.   (vinylidene fluoride) as a porogen to prepare nitrogen-enriched
            [32]  YANG J, XU M,  WANG J  Y,  et al. A facile approach to prepare   porous carbon electrode materials from pyrolysis  of  melamine
                 multiple heteroatom-doped carbon materials from imine-linked   resin[J]. Materials Today Communications, 2015, 3: 36-42.
                 porous organic polymers[J]. Scientific Reports, 2018, 8(1): 1-11.   [48]  HU B,  ZHANG W B, YAN K,  et al. Nitrogen-doped micro-nano
            [33]  WANG L, ZHENG Y L, WANG X H, et al. Nitrogen-doped porous   carbon spheres with multi-scale pore structure obtained from
                 carbon/Co 3O 4 nanocomposites as anode materials for lithium-ion   interpenetrating polymer networks for electrochemical capacitors[J].
                 batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(10):   RSC Advances, 2018, 8(61): 35083-35093.
                 7117-7125.                                    [49]  LIU E  H, SHEN  H J, XIANG X  X,  et al.  A novel activated
            [34]  MA F W, ZHAO H, SUN L P, et al. A facile route for nitrogen-doped   nitrogen-containing carbon anode  material for lithium secondary
                 hollow graphitic  carbon spheres with superior  performance in   batteries[J]. Materials Letters, 2012, 67(1): 390-393.
                 supercapacitors[J]. Journal of Materials Chemistry, 2012, 22(27):   [50]  RADHAKRISHNAN A K, NAIR S, SANTHANAGOPALAN D.
   37   38   39   40   41   42   43   44   45   46   47